
A bicycle can be self-stable without gyroscopic or caster effects
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A riderless bicycle can automatically steer itself so as to recover from falls. The common view is that this self-steering is
caused by gyroscopic precession of the front wheel, or by the wheel contact trailing like a caster behind the steer axis. We
show that neither effect is necessary for self-stability. Using linearized stability calculations as a guide, we built a bicycle
with extra counter-rotating wheels (canceling the wheel spin angular momentum) and with its front-wheel ground-contact
forward of the steer axis (making the trailing distance negative). When laterally disturbed from rolling straight this bicycle
automatically recovers to upright travel. Our results show that various design variables, like the front mass location and the
steer axis tilt, contribute to stability in complex interacting ways.

A bicycle and rider in forward motion balance by
steering towards a fall, which brings the wheels back
under the rider (1) (also see Ch. S1-2). Normally rid-
ers turn the handlebars with their hands to steer for
balance. With hands off the handlebars, body lean-
ing relative to the bicycle frame can also cause ap-
propriate steering. Amazingly, many moving bicy-
cles with no rider can steer themselves so as to bal-
ance; likewise with a rigid rider whose hands are off
the handlebars. For example, in 1876 Spencer (2, 3)
noted that one could ride a bicycle while lying on
the seat with hands off, and the film ‘Jour de fête’ by
Jacques Tati, 1949, features a riderless bicycle self-
balancing for long distances. Suspecting that bicycle
rideability with rider control is correlated with self-
stability of the passive bicycle, or at least not too
much self-instability, much theoretical research has
focused on this bicycle self-stability.

The first analytic predictions of bicycle self-
stability were presented independently by French
mathematician Emmanuel Carvallo (4) (1897) and
Cambridge undergraduate Francis Whipple (3, 5)
(1899). In their models, and in this paper, a bi-
cycle is defined as a three-dimensional mechanism
(Fig. 1A) made up of four rigid objects (the rear
frame with rider body B, the handlebar assembly
H, and two rolling wheels R and F) connected by
three hinges. The more complete Whipple version
has 25 geometry and mass parameters. Assuming
small lean and steer angles, linear and angular mo-
mentum balance, as constrained by the hinges and

rolling contact, lead to a pair of coupled second-
order linear differential equations for leaning and
steering (6) (see also Ch. S3). Solutions of these
equations show that after small perturbations the mo-
tions of a bicycle may exponentially decay in time to
upright straight-ahead motion (asymptotic stability).
This stability typically can occur at forward speeds
v near to

√
gL, where g is gravity and L is a char-

acteristic length (about 1m for a modern bicycle).
Limitations in the model include assumed linearity
and the neglect of motions associated with tire and
frame deformation, tire slip, and play and friction in
the hinges. Nonetheless, modern experiments have
demonstrated the accuracy of the Whipple model for
a real bicycle without a rider (7).

The simple bicycle model above is energy-
conserving. Thus the asymptotic stability of a bi-
cycle, that the lean and steer angles exponentially
decay to zero after a perturbation, is jarring to those
familiar with Hamiltonian dynamics. But because
of the rolling (non-holonomic) contact of the bicy-
cle wheels, the bicycle, although energy conserving,
is not Hamiltonian and it is possible for a subset of
variables to have exponential stability in time (6, 8).
There is no contradiction between exponential de-
cay and energy conservation because for a bicycle
the energy lost from decaying steering and leaning
motions goes to increase the forward speed. Unre-
solved, however, is the cause of bicycle self-stability.
In some sense, perhaps, a self-stable bicycle is some-
thing like a system with control, albeit self-imposed.

Rider-controlled stability of bicycles is indeed
related to their self-stability. Experiments like those
of Jones (9) and R. Klein (10) show that special ex-
perimental bicycles that are difficult for a person to
ride, either with hands on or off, tend not to be self-
stable. Both no-hands control (using body bending)
and bicycle self-stability depend on ‘cross terms’ in
which leaning causes steering or vice versa. The
central question about what causes self-stability is
thus reduced to: what causes the appropriate cou-
pling between leaning and steering? The most of-
ten discussed of the coupling effects are those due
to front-wheel gyroscopic torque and to caster ef-
fects from the front wheel trailing behind the steer
axis. Trail (or ‘caster trail’) is the distance c that the
ground contact point trails behind the intersection of
the steering axis with the ground (see Fig. 1A).

There is near universal acceptance that either
spin angular momentum (gyroscopic torque) or trail,
or both, are necessary for bicycle stability (3). These
two effects are discussed below, in order, and then
considered more critically. Active steering of a bi-
cycle front wheel causes a gyroscopic torque on an
upright frame and rider. Because the front wheel is
relatively light compared to the more massive bicy-
cle and rider, the effect of this gyroscopic torque on
the lean is generally small (11) (see also Ch. S1).
However, coupling the other way, i.e., the effect of
active bicycle leaning on hands-free steering, is non-
negligible. For example, when the bicycle has a lean
rate to the right, the front axle also has a lean rate
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Figure 1: (A) The bicycle model consists of two interconnected frames B and H connected to two wheels R and F. The model has a total of 25 geometry and mass-
distribution parameters. Central here are the rotary inertia Iyy of the front wheel, the steer axis angle (‘rake’) λs and the trail distance c (positive if contact is behind the
steer axis). Depending on the parameter values, as well as gravity g and forward speed v, this bicycle can be self-stable or not. (B) A theoretical two-mass-skate (TMS)
bicycle is a special case described with only 9 free parameters (8 + trail). The wheels function effectively as ice-skates. The two frames each have a single point mass and
no mass moments of inertia. A heavy point mass on the rear frame at the rear skate ground contact point can prevent the bicycle from tipping over frontward; because it
has no effect on the linearized dynamics it is not shown. Even with negative trail (c < 0, see inset) this non-gyroscopic bicycle can be self-stable.
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Figure 2: Realization of the model from Fig. 1B. (A) The experimental two-mass-skate (TMS) bicycle. (B) Front assembly. A counter-rotating wheel cancels the spin
angular momentum. The ground contact is slightly ahead of the intersection of the long steer axis line with the ground, showing a small negative trail (Video S3). (C)
Self-stable experimental TMS bicycle rolling and balancing (photo C by Sam Rentmeester/FMAX).

to the right, and the spinning wheel exerts a clock-
wise (looking down) reactive torque carried, at least
in part, by the handlebar assembly. This reaction
torque tends to turn the handlebars rightward. Thus
the common explanation of no-hands rider control:
to steer to the right, the rider bends her upper body to
the left, tilting the bicycle and wheels rightward (5).
The bicycle handlebars, considered as freely rotating
on the steer axis and forced by the gyroscopic front
wheel, thus initially turn rightward. Such leaning-
induced steering can be used for rider control of bal-
ance. Likewise, this gyroscopic coupling also con-
tributes to a forward-moving passive bicycle self-
steering toward a fall (12).

The most thorough discussion of the necessity
of gyroscopic coupling of leaning to steering for bi-
cycle self-stability is in the bicycle chapter of the
fourth volume of the gyroscope treatise by Klein and
Sommerfeld (11) (K&S). They took the example bi-
cycle parameters from Whipple and eliminated just
the spin angular momentum of the wheels. Using
their own linearized dynamic stability analysis of the
Whipple model, K&S concluded that “... in the ab-
sence of gyroscopic actions, the speed range of com-
plete stability would vanish” (11) and make what ap-
pears to be a strong general claim about bicycles:

“The gyroscopic action, in spite of
its smallness, is necessary for self-
stability.” (p. 866 (11))

They emphasized that the gyroscopic torque does
not apply corrective lean torques to a bicycle di-
rectly, as others seem to have thought (13). Rather,
leaning causes, through the gyroscopic torque, steer-
ing, which in turn causes the righting accelerations:
“The proper stabilizing force, which overwhelms the
force of gravity, is the centrifugal force, and the gy-
roscopic action plays the role of a trigger.” (11)

In Jones’s famous search for an unrideable bi-
cycle (URB) (9), he added a counter-rotating disk
to the handlebar assembly, canceling the gyroscopic
self-steering torque of the front wheel. He could
still (barely) ride such a non-gyro bicycle no-hands.
Jones rightly deduced that the gyroscopic effect dis-
cussed in K&S was not the only coupling between
leaning and steering. Jones emphasized the impor-
tance of the front-wheel ground contact being be-
hind the steering axis (i.e., positive trail, c > 0,

Fig. 1A). Even though the front forks of modern
bicycles are typically bent forward slightly, with the
wheel-center forward of the steering axis, all mod-
ern bicycles still have positive trail (typically from 2
- 10 cm) because of the steering axis tilt, λs > 0.
When Jones modified his bicycle by placing the
front-wheel ground contact in front of the steer axis
(negative trail, c < 0) he could not ride no-hands.

In Jones’s view a bicycle wheel is, in part, like
a caster wheel on a shopping cart, where the wheel
trails behind a vertical pivot axis. If a modern bi-
cycle is rolled forward by guiding the rear frame in
a straight line while it is held rigidly upright, the
front wheel will quickly self-center like a shopping-
cart caster. Jones noted “The bicycle has only ge-
ometrical caster [trail] stability to provide its self-
centering”. Jones’s main focus was a second trail
effect: the vertical ground contact force on the front
wheel ground contact point exerts a steering torque
on a leaned bicycle even when the bicycle is steered
straight. Jones calculated the steer torque caused
by lean as a derivative of a static potential energy,
neglecting the weight of the front assembly. If a
typical modern bicycle is firmly held by the rear
frame, leaned to the right, and pressed down hard,
then the vertical ground contact forces on the front
wheel cause a rightward steering torque on the han-
dlebars. The Jones torque can be felt on a normal
bicycle by riding in a straight line and bending your
upper body to the left, leaning the bicycle to the
right: to maintain a straight path the hands must
fight the Jones torque and apply a leftwards torque
to the handlebars. According to Jones, this torque
causes steering toward a fall only when the trail is
positive. When the trail is zero, Jones’s theory pre-
dicts no self-correcting steer torque. Jones seems to
conclude that no-hands control authority (the ability
to cause steering by body bending) and self-stability
both depend on positive trail. A mixture of the two
mechanisms Jones discusses certainly suggests that
trail is a key part of bicycle stability.

Following K&S and Jones, it has become com-
mon belief that steering is stable because the front
wheel ground contact drags behind the steering axis,
and leaning is stable because some mixture of gyro-
scopic torques and trail cause an uncontrolled bicy-
cle to steer in the direction of a fall (3).

Are gyroscopic terms or positive trail, together

or separately, really either necessary or sufficient for
bicycle self-stability? Following Carvallo, Whip-
ple, K&S and others since (see history in (6)) we
start with the linearized equations of motion. Using
the numerical values from the benchmark example
in (6)) and setting the gyroscopic terms to zero we
find here that self-stability is lost (Ch. S6.1, sim-
ilar to the result of K&S for the Whipple parame-
ters). However, we also found bicycle designs that
are self-stable without gyroscopic terms.

The conflict with K&S is partly resolved by
noting sign errors in their key stability term (3).
Despite their calculation errors, the Whipple bicy-
cle, with Whipple’s example parameters, does in-
deed lose self-stability when the gyro terms are set
to zero. But with their incorrect expressions, K&S
could make slightly more general claims that are not
valid when the sign errors are corrected (3). What-
ever generality K&S intended (their wording is am-
biguous), their result does not apply to bicycles in
general.

Similarly Jones’s simplified static energy calcu-
lation seems incomplete in the context of a dynam-
ical system, like the Whipple and Carvallo models.
Jones’s static energy calculation only calculates (in-
completely) one term, K0δφ, of the full dynamics
equations (3, 6). In a full dynamic analysis K0δφ

does not predict the steering of a falling bicycle (3).
For example, that term can be non-zero for a bicy-
cle that falls with no self-corrective steering at all.
And, just as for the gyroscopic term, we can find de-
signs with zero or negative trail that we predict are
self-stable (Ch. S6.2).

In contrast to the conventional claims above for
the necessity of gyroscopic terms and trail, we have
found no rigorous reasoning that demands either. To
understand better what is needed for self-stability,
we eliminated as many bicycle parameters as pos-
sible (14). Most centrally, we eliminated the gyro-
scopic terms and set the trail to zero (c = 0). We
also reduced the mass distribution to just two point
masses: one for the rear frame B and one for the
steering assembly H (Fig. 1B). With these theoreti-
cal parameters the wheels having no net spin angular
momentum, are mechanically equivalent to skates.
These simplifications reduce the number of parame-
ters from Whipple’s 25 to a more manageable 8.

Stability analysis of this theoretical two-mass-
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Figure 3: (A) Stability plot for the experimental TMS stable bicycle. Solutions of the differential equations are exponential functions of time. Stability corresponds to all
such solutions having exponential decay (rather than exponential growth). Such decay only occurs if all four of the eigenvalues λi (which are generally complex numbers)
have negative real parts. The plot shows calculated eigenvalues as a function of forward speed v. For v > 2.3 m/s (the shaded region) the real parts (solid lines) of all
eigenvalues are negative (below the horizontal axis) and the bicycle is self-stable. (B) Transient motion after a disturbance for the experimental TMS bicycle. Measured
and predicted lean and yaw (heading) rates of the rear frame are shown. The predicted motions show the theoretical (oscillatory) exponential decay. Not visible in these
plots, but visible in high-speed video (Video S4), is a 20 Hz shimmy that is not predicted by the low-dimensional linearized model (Ch. S14-15).

skate (TMS) bicycle model (Ch. S7), confirmed
by numerical solution of the governing differential
equations (Fig. 3B), shows that neither gyroscopic
terms nor positive trail are needed for self-stability
(Routh-Hurwitz (15) analysis shows that all eigen-
values of the theoretical TMS bicycle can have neg-
ative real parts at some forward speeds, Fig. 3A).

We used the stable theoretical TMS bicycle pa-
rameters as a basis for building an experimental
TMS bicycle (Fig. 2A, Ch. S8-9). We used small
wheels to minimize the spin angular momentum.
To further reduce the gyroscopic terms, following
Jones, we added counter-spinning disks that rotate
backward relative to the lower wheels (Fig. 2B,
video S2). The experimental TMS bicycle was built
to have a slightly negative trail (c = −4 mm < 0,
Video S3). While the experimental TMS bicycle
looks like a folding scooter, it is still a bicycle (two
wheels, two frames, three hinges).

Because all physical objects have distributed
mass, the measured parameters of the experimental
TMS bicycle were necessarily slightly different from
those of the theoretical design, which was based on
point masses. Using measured parameters, we cal-
culate the stability plot of Fig. 3A (Ch. S7-8). For
rolling speeds greater than 2.3 m/s all eigenvalues
have negative real parts (implying self-stability).

After an initial forward push, the coasting ex-
perimental TMS bicycle (Fig. 2C) would remain up-
right before it slowed down to about 2 m/s (Video
S1, Ch S10-11). As it slowed down below 2 m/s
the bicycle would begin to fall. In a perturbation ex-
periment, the stable coasting bicycle (v > 2.3 m/s)
was hit sideways on the frame, causing a jump in the
lean rate, followed by a recovery to straight-ahead
upright rolling.

The lean and yaw rates were measured (teleme-
tered). A data set is compared to theory in Fig. 3B
(Video S4). One difference between experiment and
theory is lateral wheel slip at the initial perturbation,
which caused an initial jump in the measured yaw
rate (triangles in the first 0.25 s of Fig. 3B). The the-
oretical model assumed no slip. High-speed video
(Video S4) also shows a 20 Hz shimmy, which is
due, at least in part, to unmodeled steering axis play
(Ch. S11). Nonetheless, after the slipping period,
even with the shimmy, the data reasonably track the

low-dimensional linear model’s predictions.
Both the theoretical analysis and physical ex-

periment show that neither gyroscopic torques nor
trail are necessary for bicycle self-stability. Nor are
they sufficient. Many bicycle designs with gyro-
scopic front wheels and positive trail are unstable at
every forward speed (Ch. S6.3). Also, all known
bicycle and motorcycle designs lose self-stability at
high speeds because of gyroscopic terms (e.g. (6)).
In contrast the TMS bicycle does not have gyro-
scopic terms and is predicted to maintain stability
at high speeds.

With no gyroscopic torque and no trail, why
does our experimental TMS bicycle turn in the direc-
tion of a fall? A general bicycle is complicated, with
various terms that can cause the needed coupling of
leaning to steering. Only some of these terms de-
pend on positive trail or on positive spin angular mo-
mentum in the front wheel. In the theoretical and ex-
perimental TMS designs, the front assembly mass is
forward of the steering axis and lower than the rear-
frame mass. When the TMS bicycle falls, the lower
steering-mass would, on its own, fall faster than the
higher frame-mass for the same reason that a short
pencil balanced on end (an inverted pendulum) falls
faster than a tall broomstick (a slower inverted pen-
dulum). Because the frames are hinged together, the
tendency for the front steering-assembly mass to fall
faster causes steering in the fall direction. The im-
portance of front assembly mass for Jones-like static
torques has been noted before (8, 16, 17).

Why does this bicycle steer the proper amounts
at the proper times to assure self-stability? We have
found no simple physical explanation equivalent to
the mathematical statement that all eigenvalues must
have negative real parts (Ch. S4).

For example, turning toward a fall is not suffi-
cient to guarantee self-stability. For various candi-
date simple sufficient conditions X for stability, we
have found designs that have X but that are not self-
stable. For example, we have found bicycles with
gyroscopic wheels and positive trail that are not sta-
ble at any speed (Ch. S6.3). We also have found no
simple necessary conditions for self-stability. Be-
sides the design with no gyroscope and negative trail
we have found other counter-examples to common
lore. We have found a bicycle that is self-stable with

rear-wheel steering (Ch. S6.7). We also found an
alternative theoretical TMS design that has, in ad-
dition to no-gyro and negative trail, also a negative
head angle (λs < 0, Ch. S6.6).

Are there any simply described design features
that are universally needed for bicycle self-stability?
Within the domain of our linearized equations, here
is one simple necessary condition we have found
(Ch. S5):

To hold a self-stable bicycle in a
right steady turn requires a left
torque on the handlebars.

Equivalently, if the hands are suddenly released from
holding a self-stable bicycle in a steady turn to the
right, the immediate first motion of the handlebars
will be a turn further to the right. This is a rigorous
version of the more general as-yet-unproved claim
that a stable bicycle must turn toward a fall.

Another simple necessary condition for self-
stability is that at least one factor coupling lean to
steer must be present (at least one of Mδφ, Cδφ, or
Kδφ) must be non-zero, Ch. S3). These coupling
terms arise from combinations of trail, spin momen-
tum, steer axis tilt, and center of mass locations and
products of inertia of the front and rear assemblies.

Although we showed that neither front-wheel
spin angular momentum nor trail are necessary for
self-stability, we do not deny that both are often im-
portant contributors. But other parameters are also
important, especially the front-assembly mass dis-
tribution, and all the parameters interact in complex
ways. As a rule we have found that almost any self-
stable bicycle can be made unstable by mis-adjusting
only the trail, or only the front-wheel gyro, or only
the front-assembly center-of-mass position. Con-
versely many unstable bicycles can be made stable
by appropriately adjusting any one of these three de-
sign variables, sometimes in an unusual way. These
results hint that the evolutionary, and generally in-
cremental, process that has led to common present
bicycle designs might not yet have explored poten-
tially useful regions in design space.
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