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ABSTRACT

Rider control in bicycling is modeled by first adding the rider as a passive mechanism to the Whipple bicycle
model. Next, for the rider control model a linear PID controller with or without delay is assumed, where the
control inputs are the bicycle lean angle and steer angle with their higher derivatives, and the control output
is the action-reaction steer torque applied by the rider at the handle bars. Experimental data is obtained
from riding a bicycle on a narrow treadmill while applying an intermitted lateral perturbation by means of
an impulse force applied at the seat post. The experiments are conducted in both the stable and the unstable
forward speed range. A parametric control model is fitted to the data. The identified parameters, after
reduction, stabilize the system and seem to mimic realistic rider control behavior.

1 INTRODUCTION

Balancing a bicycle in motion is an acquired skill which is poorly understood. Multibody dynamic models
of the uncontrolled bicycles have provided fundamental insight into bicycle stability in relation to speed
and geometry [1, 2]. Further insight into human control is needed, e.g. to design bicycles, possibly with
augmented control, minimizing risks of falling. In particular we need to better understand which sensory
information is used by the rider, and how this information is used in the combined steering and stabilization
task.

The research in human rider control in bicycles and motorcycles started in the seventies during the renewed
interest in cybernetics [3, 4, 5, 6]. Among the first were Van Lunteren & Stassen [3] who used a station-
ary bicycle setup, mimicking normal bicycling, to investigate the influence of drugs and alcohol on the
performance of the rider. With the same setup they used system identification techniques to identify the
rider control at one fixed forward speed, where they adequately described the rider as a linear PID con-
troller with delay. Rice & Roland [4] measured rider control behavior after an initial lateral perturbation
at various speeds on various bicycles and compared the results to computer simulations. Weir [5] used a
computer model of a motorcycle rider combination to identify the transfer functions of the various control
input-output relations, and concluded that steer torque response to lean angle error is the easiest way to
balance a motorcycle in motion. The first to do an actual validation of a rider-vehicle model was Eaton [6],
who carried out experiments to validate the theoretical Sharp [7] motorcycle model (including tires) and the
rider control crossover model by Weir [5]. After these pioneering studies, most attention has been directed
to high-speed motorcycle rider control for reasons of traffic safety [8]. However, the act of balancing at
low speed, as is the case for bicycles, has been given little attention. Only this decade, the research on low
speed human rider control in bicycling was started again at TU Delft and UC Davis, by observing motions
of various rider-bicycle combinations while balancing a bicycle in motion on a large treadmill [9].

Currently there are two main modeling approaches on human rider control in bicycling. One builds on the
well-developed quasi-linear aircraft pilot and car driver model as developed by McRuer et al. [10, 11, 12]
and are transferred to the control of a bicycle. The other is more about intermittent control, where the
rider has no action until a certain threshold and then performs an impulsive like action (e.g. Doyle [13]).
Such systems are essentially nonlinear, and parallels can be drawn with the recent human postural balance
research by Milton [14]. Here we have investigated the validity of the first type of models, that is, a linear
controller with or without delay.



The outline of the paper is as follows. After this introduction the model of the bicycle-rider combination
which is used in the system identification process is presented. Then the method of the applied system
identification techniques are is discussed. Next the measurements are briefly discussed after which the
results of the system identification are presented. The paper ends with a discussion of the results and some
conclusions.

2 METHODS

For the rider model we assume a linear PID controller with or without delay, where the control inputs are the
bicycle lean and steer angle with their higher derivatives, and the control output is the steer torque. The rider
is assumed to be rigidly attached to the rear frame. The experimental data is obtained from UC Davis [15],
where experiments concerning rider control in bicycling are in progress. In the here used experiments, the
bicycle is ridden on a narrow treadmill and intermittently laterally perturbed by an impulsive force at the
seat post, see Figure 1. First a nonparametric final impulse response (FIR) model is derived, which served
as a platform for subsequent parametric modeling. Next the parametric model is fitted to the non parametric
model using the steer angle signal. The experiments were done at three forward speeds: 3.2, 4.3 and 7.4
m/s, and by such covering both unstable and stable lateral motions.

3 EXPERIMENTAL SETUP

At UC Davis a measurement bicycle is constructed, which is fully equipped with a number of sensors to
measure the state and rider input, see Figure 1. In addition, a perturbator mechanism is present, which is
used to excite the system. These perturbations are applied by laterally pulling a rope with a force sensor in
series, which is attached on the seat post. The measurement bicycle has the following characteristics: the
upper body lean is constrained by rigidly fixing the upper body with a harness to the bicycle frame in order
to mimic the rigid rider bicycle model (Whipple model) as best as possible. Next, the knees are fixed to the
bicycle frame, which prevents the lateral knee movement which was observed in [16]. And the bicycle is
electrically driven, so the rider does not need to exert pedaling power and thus eliminates the need for lower
limb movement.

(a) (b)

Figure 1. a): Instrumented and actuated measurement bicycle with rigid rider harness, parameters
according to Table 4 and system matrices according to Table 5, and b): Experimental setup at UC Davis
of an instrumented and actuated bicycle riding on a narrow treadmill. The lateral perturbation is an
impulsive pulling force at the seat post.

Initially two different types of experiments are performed; lateral line tracking and roll stabilization of which
only the latter is used here. The experiments are performed in two environments; on a horse treadmill and
at the gymnasium. The horse treadmill proved to be more suitable for the perturbation experiments, since it



Figure 2. Measurements of the roll angle φ (top), steering angle δ (middle) and disturbance w (bottom)
for a forward velocity of 4.3 m/s.

is more easy to perturb a stationary positioned bicycle by pulling the rope. A downside of this environment
is the rather narrow track, resulting in a stressful and unnatural overly concentrated way of bicycling, which
turned the roll stabilization more into heading tracking. The treadmill perturbation experiments are per-
formed at forward velocities of about 2, 3, 4 and 7 m/s with a measurement time of T = 60− 90 seconds,
each of them is repeated a number of times.

The measured data during the experiment are: the forward velocity v, the rear frame roll angle φ and roll
rate φ̇, the steer angle δ and steer rate δ̇, the disturbance force applied at the seat post w, and the steering
torque Tδ . Unfortunately the measured steering torque showed a bad correlation with the one needed to
drive the Whipple model in the same trajectory, it was off by a factor of 2 to 3, and was not used in the
identification process. Figure 2 shows a typical measurement of the roll angle, steering angle and input
force.

For further analysis, measured data from four trials are chosen, these runs are shown in Table 1. The corre-
sponding data for these trials is publicly available and can be downloaded from [15]. These four trials are
chosen, because they show a clear input/output relationship, which allows for proper system identification.
Note that the first run is performed with a different rider and task description than the other three, which
may make it difficult to compare with each other.

For the dynamic model of the bicycle rider combination, see Section 4, the dimensions and inertial proper-
ties of the bicycle are measured according to [17]. The resulting parameters for the rigid rider (Whipple)
bicycle model are presented in Table 4, whereas in Table 5 the corresponding mass, damping and stiffness
matrices together with the disturbance force transfer matrix are shown. Note that the lateral force w con-
tributes mainly to the generalized lean torque Tφ and little to the generalized steer torque Tδ . This makes
sense, because the rope is attached under the rider seat and is pulled in a lateral direction, which mainly
causes a roll torque.



RunID Rider v (m/s) T (s) Enviroment Date and Time Task description

105 Jason 3.2 60 Horse treadmill 24-Feb-2011 18:28:23 Line tracking with disturbance
280 Luke 2.1 90 Horse treadmill 30-Aug-2011 15:38:43 Balance with Disturbance
282 Luke 4.3 90 Horse treadmill 30-Aug-2011 16:07:59 Balance with Disturbance
285 Luke 7.4 90 Horse treadmill 30-Aug-2011 16:20:52 Balance with Disturbance

Table 1. Run number used for further data analysis. Notice that the rider and task of the first entry is
different from the other three.
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Figure 3. The bicycle model: four rigid bodies (rear wheel R, rear frame B, front handlebar assembly
H, front wheel F) connected by three revolute joints (rear hub, steering axis, front hub), together with
the coordinate system and the degrees of freedom.

4 SYSTEM MODEL

The total system is a combination of a bicycle and rider. For the bicycle the Whipple rigid rider model
will be used. Whereas, the rider control will be modeled as a linear feedback control system with inherent
neuromuscular lag and time delays.

4.1 Bicycle model

The bicycle model used is the so-called Whipple model [18], which recently has been benchmarked [1].
The model, see Figure 3, consists of four rigid bodies connected by revolute joints. The contact between the
knife-edged wheels and the flat level surface is modelled by holonomic constraints in the normal direction,
prescribing the wheels to touch the surface, and by non-holonomic constraints in the longitudinal and lateral
directions, prescribing zero longitudinal and lateral slips. In this original model, it is assumed that the rider
is rigidly attached to the rear frame and has no hands on the handlebar. The resulting non-holonomic
mechanical model has three velocity degrees of freedom: forward speed v, lean rate φ̇ and steering rate δ̇.

The lateral motions can be described by the linearized equations of motion for small perturbations about
the upright steady forward motion. These linearized equations of motion are fully described by Meijaard et
al. [1]. They are expressed in terms of small changes in the lateral degrees of freedom (the rear frame
roll angle, φ, and the steering angle, δ) from the upright straight-ahead configuration (φ, δ) = (0, 0), at a
forward speed v, and have the form

Mq̈+ vC1q̇+ [gK0 + v 2K2]q = f , (1)

where the time-varying variables are q = [φ, δ]T and the lean and steering torques are f = [Tφ, Tδ]
T. The

coefficients in this equation are: a constant symmetric mass matrix, M, a damping-like (there is no real
damping) matrix, vC1, which is linear in the forward speed v, and a stiffness matrix which is the sum of a
constant symmetric part, gK0, and a part, v2K2, which is quadratic in the forward speed. The forces on the
right-hand side, f , are the applied forces which are energetically dual to the degrees of freedom q. In the
upright straight-ahead configuration, the linearized equation of motion for the forward motion is decoupled



from the linearized equations of motion of the lateral motions and simply reads v̇ = 0.

Besides the equations of motion, kinematic differential equations for the configuration variables that are not
degrees of freedom have to be added to complete the description. For the forward motion, the equations for
the rotation angles of the wheels are θ̇R = −v/rR, θ̇F = −v/rF, where θR and θF are the rotation angles
of the rear and front wheel and rR and rF are the corresponding wheel radii. For the lateral motion, the
equations for the yaw (heading) angle, ψ, and the lateral displacement of the rear and front wheel contact
point, yP and yQ, are ψ̇ = (vδ + cδ̇) cosλs/w, ẏP = vψ, and yQ = yP + wψ − cδ cosλs, with wheelbase
w, trail c, and head angle λs. For the case of the bicycle, these equations can be considered as a system in
series with the system defined by the equations of motion (1) with q and q̇ as inputs and the configuration
variables as outputs.

The entries in the constant coefficient matrices M, C1, K0 and K2 can be calculated from a non-minimal
set of 25 bicycle parameters as described in [1]. A procedure for measuring these parameters for a given
bicycle is described in [19], whereas measured values for the bicycles used in this study are listed in Table 4
of the appendix. Then, with the coefficient matrices the characteristic equation,

det
(
Mλ2 + vC1λ+ gK0 + v 2K2

)
= 0, (2)

can be formed and the eigenvalues, λ, can be calculated. In principle, there are up to four eigenmodes, where
oscillatory eigenmodes come in pairs. Two are significant and are traditionally called the capsize mode and
the weave mode, see Figure 4. The capsize mode corresponds to a real eigenvalue with an eigenvector
dominated by lean: when unstable, the bicycle follows a spiralling path with increasing curvature until it
falls. The weave mode is an oscillatory motion in which the bicycle sways about the heading direction.
The third remaining eigenmode is the overall stable castering mode, like in a trailing caster wheel, which
corresponds to a large negative real eigenvalue with an eigenvector dominated by steering. The eigenvalues
corresponding to the kinematic differential equations are all zero and correspond to changes in the rotation
angles of the wheels, a constant yaw angle and a linearly increasing lateral displacement.
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Figure 4. Eigenvalues for the uncontrolled instrumented bicycle from figure 1 in the forward speed
range 0 < v < 10 m/s, solid lines are the real values and dashed lines are the imaginary values.
The speed where the weave motion becomes stable is vweave ≈ 6.2 m/s. Forward speeds used in the
experiments are donated by an ∗.

For control purposes it is convenient to express the bicycle equations (1) in state space form and as a set of



transfer functions. The state space representation is then give by,

ẋ = Ax+Bf (3)
y = Cx+Df , (4)

whith the state vector x = [φ̇, δ̇, φ, δ]T , input vector f = [Tφ, Tδ]
T , and output vector y = [φ, δ]T . The

system matrix A, input gain matrix B, observer matrix C and direct feed-through matrix D are then given
by,

A =

[
−M−1vC1 −M−1

(
gK0 + v2K2

)
I 0

]
, B =

[
M−1

0

]
,

C =
[
0 I

]
, D = [0] .

(5)

The state space equations can also be expressed as a set of transfer functions Hyf(s) by making use of,

y(s) = Hyf(s)f(s) , with Hyf(s) = C (sI−A)
−1

B+D, (6)

where the s denotes the Laplace argument. Finally we end by introducing the reference error z. Since we
are interested in roll stabilization, this simply becomes z = −φ, resulting in the following transfer function:

z(s) = Hzf(s)f(s) , where Hzf(s) = −[0, 0, 1, 0]Hyf(s) (7)

4.2 Rider control model

The rider control model is assumed to be a a linear feedback system in series with neuromuscular lag and
time delay. The linear feedback system is usually written as

u(s) = K(s)y(s), (8)

with the control input y, control output u, and feedback gains K(s). In our model the rider control input
is assumed to be the bicycle lean and steer angle, y = [φ, δ]T , and for the rider control output we assume
steer torque only, u = [Tδ,u]. This rider control output then acts as input to the bicycle model, f = [0, 1]Tu,
and by such closes the control loop. We assume only steer torque control because according to [16] the roll
angle is mainly controlled by this, whereas the upper-body lean action is insignificant for control purpose.
Moreover, during the experiments the upper-body lean is restrained by a harness connected rigidly to the
bicycle. In addition the knees are also connected to the bicycle frame through a set of magnets. All together,
this makes it very unlikely that the rider uses other control means than the steering control. This rider
contribution to the generalized steering torque will be denoted by Tδ,u, where the subscript u indicates the
rider contribution. Next we introduce a number of sensory feedback gains, which act linearly on the bicycle
configuration output. We assume the rider to be capable of sensing and applying proportional, integrative,
first and second order derivative action. These assumptions may be modeled mathematically according to,

Kφ(s) = kφp + kφi s
−1 + kφd s+ kφdd s

2 ,

Kδ(s) = kδp + kδi s
−1 + kδd s+ kδdd s

2 , (9)

with roll angle feedback Kφ and steer angle feedback Kδ . The gains k with subscript p, i, d and dd indicate
proportional, integral, first and second order derivative gains respectively.

According to McRuer and Jex [20], the human controller is inherently limited by neuromuscular lag and
time delays. Here neuromuscular dynamics of the rider arms are modeled using shoulder muscle model
from [21, 22], which yields,

Gnm(s) =
ω2
c

s2 + 2ζωc + ω2
c

, (10)

with cuttof frequency ωc = 2.17 · 2π rad/s and damping coefficient ζ =
√
2. This system acts as a

critically damped second order filter with a cuttoff frequency equal to ω0. Neural transmission results in
an effective time delay, which differs for visual, vestibular and muscle feedback. Such time delays have
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Figure 5. Block diagram of the inner control structure of K, with roll and steering angle feedback gains
Kφ and Kδ , timedelay Gτ , neuromuscular lag Gnm, input y = [φ, δ]T and output u = [Tδ,u]
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Figure 6. System description, with; output y(t), input w(t), disturbance v(t) and system G(q).

been omitted from the current study for reasons of simplicity. Sensory information regarding roll angle will
derive from the visual and the vestibular system, while sensory information regarding steer angle will derive
from muscle spindles in the arm. Manual control studies show that operators can apply proportional as well
as lead (differential) or lag (integrator) control actions using visual task information [23]. The vestibular
organ senses roll through the semicircular canals where its output is largely in phase with rotational velocity,
while the otoliths sense linear acceleration, direction and magnitude of the gravitational force. The muscle
spindles supply position and velocity information. The relevance and possible sensory origin of steering
angle acceleration and roll acceleration will be addressed in the discussion.

Finally the human limitations and the linear feedback model are combined to form a rider control model
according to,

K(s) = Gnm(s)Gτ (s)
[
Kφ(s) Kδ(s)

]T
, (11)

which is presented as a block diagram in Figure 5. Note that the forward speed v serves as a parameter,
such that all results depend on this since the dynamics of the bicycle is strongly forward speed dependent.

5 SYSTEM IDENTIFICATION

The rider control system identification is done in three steps. First, a nonparametric Finite Impulse Response
(FIR) model is fitted to the raw data. Next, the FIR model is used to obtain a noise model. Finally, a
parametric model according to (9) is used, which is optimized by using parameter reduction techniques.
The analysis is performed for a number of forward speeds, resulting in a set of parametric models.

The system identification assumes a linear input/output model with additive random noise. Then the system
can be described by,

y(t) = G(q)w(t) + v(t) , (12)

with output y(t), input w(t), disturbance v(t) and model G(q), see Figure 6. The q operator acts as a
discrete shifting function, such that q−kw(t) = w(t − k). This is a convenient description, because it
separates the deterministic input related contribution G(q)w(t) from the stochastic contribution v(t).

5.1 FIR model

The first step in the system identification is to fit a nonparametric finite impulse response (FIR) model to
the measured data. After filtering, this model than can serve as a basis for the noise model. The unknown
coefficient of the FIR model may be estimated by using the measured input w(t) and output y(t) data. The



Figure 7. Finite impulse response model for the roll angle δ (top) and steering angle δ (bottom) for
a forward velocity of v = 4.3 m/s. The raw FIR model is smoothed using a low pass filtering with a
cutoff frequency of 10 Hz.

output data is either represents y(t) = φ corresponding to Gφ(q) or y(t) = δ(t) corresponding to Gδ(q).
We assume a finite discrete normalized time; t = 1, 2, 3, . . . , n, such that the approximated output ŷ(t) is,

ŷ(t) =

m∑
k=1

ĝ(k)q−kw(t) + v(t) ,

=

m∑
k=1

ĝ(k)w(t− k) + v(t) . (13)

From the experiment we know that no input outside the measurement interval {1 < t < n} is applied, which
can be expressed as: w(t) = 0 for t < 1 and t > n. The unknown coefficients ĝ(k) can be solved form
the linear quadratic optimization problem, ĝ = argmin

ĝ

{
(ŷ − y)2

}
. After experimenting with different

finite impulse lengths, the oscillations are found to die out after m = 768 samples, which corresponds to
finite response length of 3.84 seconds. The FIR models are smoothed by applying a low pass 8th order
Butter-worth filter with a cutoff frequency of 10 Hz. The results for v = 4.3 m/s are shown in Figure 7.

5.2 Noise model

We can use the FIR model to estimate the disturbance v(t), from (12), we obtain,

v̂(t) = y(t)− ĜN (q)w(t) , (14)

where v̂(t) = [vφ(t), vδ(t)]
T is the estimated disturbance and ĜN (q) = [Ĝφ(q), Ĝδ(q)]

T represents the
obtained non parametric impulse response model from input w(t) to output y(t). The decomposition of
the measured data into the deterministic input related component and stochastic component is shown for
v = 4.3 m/s in Figure 8.

When analyzing the results from the FIR and the noise model, see Figure 7 and 8, a number of observations
can be made. The high frequency noise is merely an artifact of the deconvolution proces and does not
originate from the rider/bicycle system itself. The 4th and 5th peak in both the roll and steering angle
response, do not seem to be very likely and may be caused by noise. The signal to noise ratio for the
case v = 2.1 m/s (not shown here) is very low, resulting in an unreliable FIR model. The signal to noise
ratio of the steering angle response is generally of better quality than the roll angle response. The overall
shape of the roll and steering angle responses are similar, but the amplitudes and time characteristics differ.



Figure 8. Output decomposition of the steering angle output y(t) in terms of input related component
G(q)w(t) and remnant component v(t) for a forward velocity of v = 4.3 m/s.
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Figure 9. Block diagram of the general control description, with known bicycle dynamics P, unknown
controller K, disturbance input w, error output z = −φ, control input y and control output u.

The amplitude of the oscillation decreases as the forward velocity increases. The impulse response seems
to damp out more quickly as the forward velocity increases, which we would expect form the eigenvalue
analysis on the uncontrolled bicycle model.

5.3 Parametric model

In the parametric rider control model the parameters are the unknown gains from (9). The complete system
model, the bicycle model together with the feedback control model, is shown in Figure 9. The corresponding
parametric model structure is then given by,

y(θ) = G(θ)w , G(θ) =
[
Pyw +Pyu (I−K(θ)Pyu)

−1
K(θ)Pyw

]
, (15)

with bicycle dynamics Pyw and Pyu, human controller K(θ) with the the unknown gains k defined as
the model parameters θ, disturbance input w = w and output y = [φ, δ]T . Notice that only the human
controller model is unknown, while the bicycle dynamics are known since they are determined a priori from
the bicycle model (5).

The error criterium used to estimate the parameters θ is based on a weighted quadratic sum,

VN (θ) =
1

N

N∑
t=1

[(
Ĝδ(q)−Gδ(q,θ)

)
w(t)

]2
, (16)

where the difference between the nonparametric (FIR) and parametric models is weighted by the input signal
w. Here we only use the steering angle response because the rider directly excites the steering dynamics
and it is expected that the steering signal contains the most direct information concerning rider actions. The
initial parameter vector θ0 is determined by a random search method, for which the lowest criterium score
is further optimized by using the lsqnonlin function. The parameter optimization results in a optimal
parameter vector set according to,

θ̂ = argmin
θ
VN (θ) , (17)

The parametric modeling is performed for several cases, where the forward velocity takes the following
values: 2.1, 3.2, 4.3 and 7.4 m/s. Numerical issues were encountered with the rider model with time delays.
For the current study the problem is circumvented by ignoring the time delay by setting it to zero.

The results from the parametric model for a forward velocity of v = 4.3 m/s are shown in Figure 10. The
comparison of this parameter model response to the FIR model are shown in Figure 11.

Finally, we apply a parameter reduction technique to determine the essential feedback loops in the rider
control system. The reduction is based on the quality of the fit and selection of parameters guided by the
parameter covariance as defined by Ljung [24]. The quality of the fit is measured by the Variance Accounted
For (VAF), which is defined as the normalized difference between modeled output and measured output,

VAF(θ) = 1−
n∑

t=1

(e(t,θ)2)/

n∑
t=1

(y(t)2), with e(t,θ) = y(t)− ŷ(t,θ). (18)



Figure 10. Comparison of the noise filtered FIR, Gδ , and the parameter fitted model response G1δ of
the steer angle δ, at a forward speed of v = 4.3 m/s.

Figure 11. Zoomed in comparison of the raw FIR, the noise filtered FIR and the parameter fitted model
response of lean angle φ (left) and the steer angle δ (right), at a forward speed of v = 4.3 m/s.



Figure 12. Subsequent parameter covariance matrices after iterative parameter reduction. The para-
metric model for a forward velocity of v = 4.3 m/s. The parameter space is reduced by one
for each iteration until the VAF value drops down dramatically. The subsequent VAF values are:
(99.31, 99.26, 98.75, 0.00)%.

where a VAF score of 1 means a perfect fit. The sensitively of the quality of the fit with respect to the
parameters θ is defined by the parameter covariance,

cov θij = ρ

[
1

n

n∑
t=1

ψ(t, θi)ψ(t, θj)

]−1
, with ρ =

1

n

n∑
t=1

[e(t,θ]2, (19)

and with the partial derivative of the error e(t,θ) with respect to the ith parameters θi defined as

ψ(t, θi) = −
d

dθi
e(t,θ) =

d

dθi
ŷ(t,θ) (20)

Instead of calculating all 8! = 40320 possible combinations, we start form a full parameter set and guided
by the parameter covariance select the parameter which has the the least influence on the quality of the fit.
This process is repeated until the quality of the fit drops below a certain threshold, f.i. 50%. An example of
this parameter reduction process, for v = 4.3 m/s, is shown in Figure 12, whereas the results for all three
forward speeds is presented in Table 2. These results will be discussed in the next section.

Finally we check the stability of the system by calculating the eigenvalues for the the closed loop system
with the set of reduced control model parameters, see Table 3. We observe that the state has increased from
4 to 7 dimensions. Two states are added due to the neuromuscular activation dynamics Gnm, which acts as
a second order low pass filter on the controller output and one state is added due to the integrative feedback
action on the steering angle. The real parts of all eigenvalues are negative, which indicates stability. If
we compare these results to the open loop uncontrolled dynamics, as represented by the eigenvalues from
Figure 4, we see that unstable roots at forward speeds v = 3.2 and v = 4.3 m/s are clearly stabilized.



Model kφp kφi kφd kφdd kδp kδi kδd kδdd VAF

K(s,θ(v = 3.2))

81.41 −7.68 57.99 −1.98 −8.10 182.73 −6.98 −0.21 97.56
79.48 57.50 −2.00 −8.19 177.40 −6.99 −0.20 97.56
54.66 50.20 −0.87 147.99 −5.30 −0.13 97.33
52.18 43.51 131.94 −3.97 −0.14 97.09
36.81 32.99 89.45 −3.25 94.24

32.80 90.91 −1.72 0.00

K(s,θ(v = 4.3))
44.93 −56.22 39.65 1.16 16.25 277.79 −3.10 −0.05 99.31
29.98 −40.27 33.78 1.60 21.72 222.31 −2.05 99.26
29.58 33.79 1.26 17.08 195.40 −2.74 98.75

299.44 0.87 −54.16 −446.57 −16.06 0.00

K(s,θ(v = 7.4))

97.95 −128.03 58.78 −0.63 −30.42 1424.31 −14.10 −0.19 96.15
77.81 −108.86 51.84 −1.34 1230.16 −11.43 −0.13 96.12
76.54 −108.23 51.83 1226.80 −11.44 −0.12 96.11
62.40 −42.25 42.19 886.86 −10.34 95.25
59.20 41.56 816.11 −10.56 95.06

68.98 1372.49 −19.47 0.00

Table 2. Overview of parametric modeling results, with controller K, parameter vector θ, forward
velocity v (m/s), roll proportional gain kφp (Nm/rad), roll integrative gain kφi (Nm/s rad), roll derivative
gain kφd (Nm s/rad), roll 2nd derivative gain kφdd (Nm s2/rad), steer proportional gain kφp (Nm/rad),
steer integrative gain kφi (Nm/s rad), steer derivative gain kφd (Nm s/rad), steer 2nd derivative gain
kφdd (Nm s2/rad) and Variance Acounted For VAF (%). The grey marked rows indicate the reduced
parametric models which have a minimal number of parameters and still show a good fit (VAF> 95%).

K(s,θ(v = 3.2)) K(s,θ(v = 4.3)) K(s,θ(v = 7.4))

λ

−22.76 −25.08 −36.57
−1.70 ±11.53i −2.31 ±13.12i −2.18 ±17.86i
−1.40 ±5.25i −1.88 ±5.76i −1.93 ±7.26i
−1.16 ±2.60i −0.99 ±2.99i −1.27 ±2.91i

Table 3. Closed loop eigenvalues λ = eig(G(s,θ)) for the selected reduced parametric models from
Table 2.



6 DISCUSSION

The values for the linear feedback rider control model according to Figure 5 and equation (9), for all three
forward speeds, are presented in Table 2, from which the the following observations can be made. The
resulting identified parametric model with eight feedback gains accounts for 97% of the variance of the non
parametric model output. However, the parameters set can be reduced to only four gains while retaining
94% of the variance: a gain on the lean angle and lean rate and a gain on the steer rate and the integral of the
steer angle. The use of lean angle and rate represents vestibular and/or visual feedback, and the use of steer
angle rate represents proprioceptive feedback. The sign of the gains on the lean angle and lean rate clearly
show that the steer-into-the-fall balance principle [2] is used by the rider. The feedback of the integral of
the steer angle can be explained by the need for the rider to stay on the the narrow treadmill. Here the rider
is controlling the heading of the bicycle within small bounds and the heading is mainly determined by the
integral of the steer angle. All feedback gains show a forward speed dependency, the most profound in the
integral steering feedback, which seems to be quadratic in the forward speed.

7 CONCLUSIONS

Rider control in bicycling is identified by a linear feedback control model where muscle dynamics are
incorporated. The measured data was obtained while riding on a narrow treadmill where the system was
perturbed by an intermittent lateral impulsive force. The identified rider control model with the reduced
parameter set stabilizes the system, follows the necessary stability condition of steer into the fall and seems
to mimic human control in a natural way. Future research will be conducted to obtain experiment data of
bicycling on the open road, where the restricting of keeping a narrow lane, like on the treadmill, is released.
The same techniques as described in this paper can then be used to obtain a pure stabilizing rider control
model.
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Apendices

A Bicycle parameters
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Parameter Symbol Values
Wheel base w 1.0759 m
Trail c 0.0718 m
Steer axis tilt λs 20.1◦

Gravity g 9.81 N/kg
Forward speed v various m/s

Rear wheel R
Radius rR 0.3325 m
Mass mR 4.90 kg
Inertia (IRxx, IRyy) (0.0701, 0.12934) kgm2

Rear Body and frame assembly B
Centre of mass (xB, zB) (0.33235,−1.02217) m
Mass mB 106.40 kg

Inertia

 IBxx 0 IBxz
0 IByy 0

IBxz 0 IBzz

  13.9967 0 −0.6113
0 15.4633 0

−0.6113 0 4.4282

 kgm2

Front Handlebar and fork assembly H
Centre of mass (xH, zH) (0.8092,−0.9774) m
Mass mH 5.40 kg

Inertia

 IHxx 0 IHxz
0 IHyy 0

IHxz 0 IHzz

  0.3376 0 −0.0996
0 0.3399 0

−0.0996 0 0.1094

 kgm2

Front wheel F
Radius rF 0.3356 m
Mass mF 1.55 kg
Inertia (IFxx, IFyy) (0.0524, 0.0984) kgm2

Table 4. Parameters for the measurement bicycle plus rigid rider from Figure 1 for the bicycle model
from Figure 3.

M0 =

[
131.5085 2.6812
2.6812 0.2495

]
,C1 =

[
0 42.748

−0.31806 1.6022

]
,K0 =

[
−116.19 −2.7633
−2.7633 −0.94874

]
,K2 =

[
0 102.02
0 2.5001

]
,

Hfw =

[
0.91

0.014408

]
.

Table 5. Mass, damping and stiffness matrices (1) for the bicycle model from Figure 3 and 1 according
to the parameters from Table 4, together with the transfer matrix Hfw which maps the lateral force
applied at the seat post to the generalized forces from the bicycle model.
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