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ABSTRACT
A novel approach to bicycle design for handling qualities is

presented. The design method is introduced through a case study
in which a new front-wheel drive recumbent bicycle is developed.
Since there exists no proper definition nor assessment for bicy-
cle handling qualities, design process is based on comparing the
uncontrolled dynamics of the new concepts to an existing design,
known to handle well. A prototype was built and road test were
conducted to compare the handling before being taken into pro-
duction. The new design shows comparable handling.

INTRODUCTION
An important aspect in bicycle design is handling quality.

Unfortunately, handling qualities of a bicycle are not well de-
fined and mostly rely on subjective rider test trials [1]. Some
more experience on handling is available for motorcycles, for
a recent overview see Popov et al. [2]. However, for motorcy-
cles the main issues concern handling at moderate to high speed,
which is not the issue for bicycles. For bicycling low speed is of
interest, that is in a forward speed range of 0 to 20 km/h. The
common practice in the design process of bicycles is to use man-
ufacturer experience and the trial and error method to come to
new designs. This evolutionary process is lengthy and cumber-
some, and usually leads to suboptimal designs. The aim here is
to design bicycles for specific handling qualities.

∗Address all correspondence to this author.

A proper definition of handling qualities involves the dy-
namics and control of the complete system: bicycle plus rider.
A recent upheaval in bicycle research [3, 4, 5, 6] focuses mainly
on the bicycle whereas still little is known about the rider. Some
initial work has been done in the 70’s on bicycle rider model
identification by Van Lunteren and Stassen [7], but these results
are limited and inconclusive. A recent paper by Hess et al. [8] fo-
cusses on control models for the bicycle rider, for which unfortu-
nately no experimental validation is available yet. One conjunc-
ture is that handling qualities are closely related to the dynamics
of the uncontrolled vehicle [6]. Moreover, recent experimental
observations on bicycle rider motions [9, 10] show that the rider
does not really move relative to the bicycle and thus that a rigidly
attached rider could be a valid way to model the uncontrolled
system. That is the approach we will use here. Starting from
an existing design with good handling qualities, as perceived by
experienced riders, the uncontrolled stability of the bicycle-rider
combination is determined with a computer model. The new de-
sign will be made such that it matches the open loop stability of
the existing one in the operational forward speed range. As a
case study the design of a new front-wheel drive recumbent bi-
cycle for the firm Raptobike [11] is presented. Note that on a
recumbent bicycle the rider is not able to move relative to the
rear frame, this makes the applied rigid rider model approach
even more valid.

The paper is organized as follows. After this introduction
the design problem is stated. Next the methods are explained.
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FIGURE 1. Raptobike Lowracer recumbant bicycle, existing design
of a front drive recumbent bicycle. To accommodate variable size riders
the drive train in front of the head tube can be extended, as indicated by
the arrows.

FIGURE 2. Raptobike Midracer recumbant bicycle, new design of a
front drive recumbent bicycle. To accommodate variable size riders the
rear frame tube between the rear axle and the head tube can be extended,
as indicated by the arrows, keeping the drive train length unchanged.
Shown is the short version.

Then the results are shown and discussed. The paper ends with
some conclusions.

DESIGN PROBLEM
The firm Raptobike [11] produces recumbent bicycles and

has been successful with the design of the Lowracer, see Fig-
ure 1. This recumbent bicycle has specific characteristics: a long
wheel base, low rider position, and front wheel drive. It is known
for its good handling qualities. One problem of this front drive
concept is that the drive train (chain length) has to be adjusted to
accommodate riders of different size. The new concept, called
Midracer, solves this problem by having the length adjustment
for the rider in the rear frame between the head tube and the rear
axle. The short version of the Midracer is shown in Figure 2. An
additional design change is the use of equal sized wheels and a
higher rider position compared to that of the Lowracer.

However, the proposed length adjustment in the Midracer at
the rear frame between the rear axle and the head tube, introduces

a change in the steering geometry. Extension of the rear frame
steepens the steer axis and reduces the trail. Steer axis tilt and
trail are known to have a significant effect on the dynamics and
stability of the bicycle. But so have the mass distribution of the
individual bodies and the wheel base [6]. Moreover, in general
the short version will be driven by a lighter rider compared to the
long version. In this design study the Midracer is considered in
two configurations: short and long, with corresponding light and
heavy riders.

The design problem is to design the Midracer for the two
configurations in such a way that it has comparable handling
qualities to that of the existing Lowracer model.

METHOD
Due to the lack of a rider model the conjuncture that han-

dling qualities are closely related to the dynamics of the uncon-
trolled vehicle [6] will be used. The starting point is the existing
model which is known for its good handling qualities. Within
the design constraints, the new model parameters are then deter-
mined by nonlinear optimization such that the new model shows
identical uncontrolled dynamics as the existing one. The new
model is built, and handling qualities are accessed by driving
tests.

Bicycle Model
The basic bicycle model used is the so-called Whipple

model [12], which was recently benchmarked [3]. The model,
see Figure 3, consists of four rigid bodies connected by revolute
joints. The contact between the knife-edged wheels and the flat
level surface is modelled by holonomic constraints in the nor-
mal direction, prescribing the wheels to touch the surface, and
by non-holonomic constraints in the longitudinal and lateral di-
rections, prescribing zero longitudinal and lateral slip. In this
model, it is assumed that the rider is rigidly attached to the rear
frame and has no hands on the handlebar. The resulting non-
holonomic mechanical model has three velocity degrees of free-
dom: forward speed v, lean rate φ̇ and steering rate δ̇ .

For the lateral stability analysis, the linearized equations of
motion for small perturbations about the upright steady forward
motion are considered. These linearized equations of motion
are fully described in [3]. They are expressed in terms of small
changes in the lateral degrees of freedom (the rear frame lean an-
gle, φ , and the steering angle, δ ) from the upright straight-ahead
configuration (φ ,δ ) = (0,0), at a forward speed v, and have the
form

Mq̈+ vC1q̇+[gK0 + v2K2]q = f, (1)

where the time-varying variables are q = [φ ,δ ]T and the lean and
steering torques are f = [Tφ ,Tδ ]

T. The coefficients in this equa-
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FIGURE 3. The Whipple bicycle model: four rigid bodies (rear wheel
R, rear frame B, front handlebar assembly H, front wheel F) connected
by three revolute joints (rear hub, steering axis, front hub), together with
the wheelbase w, head angle λs, and trail c.

tion are: a constant symmetric mass matrix, M, a damping-like
(there is no real damping) matrix, vC1, which is linear in the for-
ward speed v, and a stiffness matrix which is the sum of a con-
stant symmetric part, gK0, and a part, v2K2, which is quadratic
in the forward speed. The forces on the right-hand side, f, are the
applied forces which are energetically dual to the degrees of free-
dom q. In the upright straight-ahead configuration, the linearized
equation of motion for the forward motion is decoupled from the
linearized equations of motion of the lateral motions and simply
reads v̇ = 0.

The entries in the constant coefficient matrices M, C1, K0
and K2 can be calculated from a non-minimal set of 25 bicycle
parameters as described in [3]. A procedure for measuring these
parameters for a real bicycle is described in [13, 10] whereas
measured values for the Raptobike Lowracer recumbent bicycle,
which is used in this design study, are listed in Table 1. Then,
with the coefficient matrices the characteristic equation,

det
(
Mλ

2 + vC1λ +gK0 + v2K2
)
= 0, (2)

can be formed and the eigenvalues, λ , which describe the lateral
dynamics as exponential solutions of the form q = q0 exp(λ t),
can be calculated. In principle, there are up to four eigenmodes,
where oscillatory eigenmodes come in pairs. Two are signifi-
cant and are traditionally called the capsize mode and the weave
mode, see Figure 4. The capsize mode corresponds to a real
eigenvalue with an eigenvector dominated by lean: when unsta-
ble, the bicycle follows a spiralling path with increasing curva-
ture until it falls. The weave mode is an oscillatory motion in
which the bicycle sways about the heading direction. The third
remaining eigenmode is the overall stable castering mode, like
in a trailing caster wheel, which corresponds to a large negative
real eigenvalue with an eigenvector dominated by steering. At
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FIGURE 4. Eigenvalues λ from the linearized stability analysis for
the Lowracer recumbant bicycle from figure 1 and table 1, where black
lines correspond to the real parts of the eigenvalues and the gray line cor-
responds to the imaginary part of the eigenvalues in the forward speed
range of 0 < v < 10 m/s. The self stable speed range for the Lowracer
recumbent bicycle is between the weave speed vw ≈ 4.5 m/s and the
capsize speed vc ≈ 9.6 m/s.

near-zero speeds, typically 0 < v < 0.5 m/s, there are two pairs
of real eigenvalues. Each pair consists of a positive and a neg-
ative eigenvalue and corresponds to an inverted-pendulum-like
falling of the bicycle. The positive root in each pair corresponds
to falling, whereas the negative root corresponds to a righting
motion. For v = 0, these two are related by a time reversal of the
motion. When speed is increased, two real eigenvalues coalesce
and then split to form a complex conjugate pair; this is where the
oscillatory weave motion emerges. At first, this motion is unsta-
ble, but at v = vw ≈ 4.5 m/s, the weave speed, these eigenvalues
cross the imaginary axis at a Hopf bifurcation and this mode be-
comes stable. At a higher speed, the capsize eigenvalue crosses
the origin at a pitchfork bifurcation at v = vc ≈ 9.6 m/s, the cap-
size speed, and the bicycle becomes mildly unstable. The speed
range for which the uncontrolled bicycle shows asymptotically
stable behaviour, with all eigenvalues having negative real parts,
is vw < v < vc. But, with the capsize instability being so mild,
the bicycle is stable in practice for all speeds above the weave
speed.

Optimization
The objective is to find a design for the Midracer recum-

bent bicycle which, in both short and long version, has identical
uncontrolled dynamics when compared to the existing Lowracer
recumbent bicycle. For the new Midracer design there are a num-
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ber of design constraints like the wheel size, frame size, and rider
mass and position, such that the remaining free design parame-
ters are the head angle (steer axis tilt) and the trail. The length ad-
justment in the Midracer changes the steering geometry. Exten-
sion of the rear frame steepens the steering axis and reduces the
trail. For the Midracer design, as shown in Figure 2 and Table 2,
the sensitivities for the headangle λs and the trail c for changes
in the wheelbase w are: ∂λs/∂w ≈ 15 ◦/m and ∂c/∂w ≈ −0.1
m/m.

There are various ways to quantify the objective “show iden-
tical uncontrolled dynamics”. With only a limited number of free
design parameters, here the head angle and the trail, it is in gen-
eral not possible for all four eigenvalues to be identical in the
complete forward speed range of 0 < v < 10 m/s. However, the
weave speed plays an important roll in the transition from un-
stable to stable lateral motions. Therefore, the objective here is
quantified by the weave speed for the Midracer, in both short and
long version, to be the same as for the Lowracer. This objective
can be formulated as a nonlinear optimization problem with the
to be minimized objective function,

Jmin = (vws − v̄w)
2 +(vwl − v̄w)

2, (3)

with the weave speeds for: Lowracer v̄w, Midracer short vws, and
Midracer long vwl . The free parameters in the optimization are
for the Midracer short version the head angle λs and the trail
c. The values for the Midracer long version follow directly from
the Midracer short geometry and the change in steering geometry
due to frame extension. The long version has to accommodate a
larger person. This results in the following Midracer basic differ-
ences: wheelbase short 1.1 m and long 1.3 m, rider cm position
short (0.6,0.8) m and long (0.7,0.8) m, and rider mass short 60
kg and long 80 kg, see also Tables 2 and 3. The optimization is
done in Matlab with the help of fminsearch.

RESULTS
After optimization a new design for the Midracer short and

long was found which have nearly identical weave speed as the
Lowracer model, see Figure 5. The optimized head angle and
trail for the Midracer short version are λs = 72◦ and c = 0.049
m. The Midracer long version, with an extended wheelbase of
1.3 m, then has a head angle of λs = 74.6◦ and a trail of c= 0.034
m, see Tables 2 and 3. Not only are the weave speeds nearly iden-
tical, but both Midracer designs show close related uncontrolled
dynamics around the weave speed to the existing Lowracer. Also
the Midracer short and long version uncontrolled dynamics is al-
most identical. The only visible difference is in the eigenvalues
of the caster mode, which is very stable and from a handling
perspective therefore of no interest. Overall, compared to the
Lowracer, the Midracer the weave frequency is somewhat lower
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FIGURE 5. Eigenvalues λ from the linearized stability analysis for
three Raptobike recumbant bicycles: the original Lowracer (solid lines),
the new Midracer in the short version (dashed lines) and the long version
(dotted lines), in the forward speed range of 0 < v < 10 m/s. Black lines
correspond to the real part of the eigenvalues and grays lines correspond
to the imaginary part of the eigenvalues. All three bicycles have the
same weave speed vw ≈ 4.5 m/s. The capsize speed for the three bicycles
are different: Lowrace vc ≈ 9.6 m/s, Midracer short version vc ≈ 7.3
m/s, and Midracer long versionvc ≈ 7.5 m/s.

and absolute values of real part of the eigenvalues too. This last
difference can be attributed to the Midracer higher rider position.

Finally, a prototype of the Midracer was built and tested
by experienced riders, both short and long, where the handling
showed to be comparable to the existing Lowracer model. The
Midracer is now in production.

CONCLUSIONS

Based on the conjecture that the handling qualities of a bi-
cycle are closely related to the dynamics of the uncontrolled
vehicle, a new model recumbent bicycle was designed. The-
oretically this new model, in both the short and the long ver-
sion, has nearly identical uncontrolled dynamics in comparison
to the existing model. In the performed road tests, the built pro-
totype, also showed comparable handling qualities to the exist-
ing model. This may indicate that for bicycles there is a close
relationship between uncontrolled dynamics and their perceived
handling qualities.
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TABLE 1. Parameters for the Lowracer recumbent bicycle from fig-
ure 1. A sketch of the model, drawn to scale, is shown at the top. In this
sketch, the mass moments of inertia of the wheels are indicated by their
radii of gyration and the mass moments of inertia for the other rigid bod-
ies are depicted by 6-mass balls lined up in pairs in the three principal
directions. The mass of every ball is 1/6 of the total mass (the circle at
the center represents both a right mass and a left mass hidden behind it).
The principal axes are (1,2,z), where the 1-axis makes an angle α1 with
the x-axis. For the Whipple bicycle model the rear frame and rider are
eventually combined into one rigid body.

raptobikelowracer

0
x

y

wheel base trail

0 2 4 6 8 10
-10

-5

0

5

10

forward speed - m/s

R
e(
)

 in
 b

lu
e 

an
d 

Im
(

) 
in

 c
ya

n 
- 

1/
s

S
ta

bl
e 

<
->

 U
ns

ta
bl

e

wheel base w 1.26 m
trail c 0.065 m
steer axis tilt λs 72◦

wheel rear front
diameter 0.6858 m 0.4860 m
mass 2 kg 2 kg
moment of inertia Ixx & Iyy 0.085513 kgm2 0.085513 kgm2

moment of inertia Izz 0.171026 kgm2 0.171026 kgm2

rear rear frame rider
centre of mass (x,y) (0.6,0.5) m (0.8,0.55) m
mass 10 kg 85 kg
moment of inertia I11 0.058579 kgm2 2.5 kgm2

moment of inertia I22 0.341421 kgm2 10.5 kgm2

moment of inertia Izz 0.4 kgm2 12 kgm2

principal axis angle α1 22.5◦ −14.87◦

front front frame
centre of mass (x,y) (1.113,0.652) m
mass 2 kg
moment of inertia I11 0.058579 kgm2

moment of inertia I22 0.0000588 kgm2

moment of inertia Izz 0.05879 kgm2

principal axis angle α1 19.02◦
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TABLE 2. Parameters for the short version of the Midracer recumbent
bicycle from figure 2. Shown at the top is a sketch of the model drawn
to scale. For further explanation see Table 1.
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wheel base w 1.1 m
trail c 0.049 m
steer axis tilt λs 72◦

wheel rear front
diameter 0.659 m 0.659 m
mass 2 kg 2 kg
moment of inertia Ixx & Iyy 0.085513 kgm2 0.085513 kgm2

moment of inertia Izz 0.171026 kgm2 0.171026 kgm2

rear rear frame rider
centre of mass (x,y) (0.6,0.5) m (0.6,0.8) m
mass 10 kg 60 kg
moment of inertia I11 0.058579 kgm2 2.5 kgm2

moment of inertia I22 0.341421 kgm2 10.5 kgm2

moment of inertia Izz 0.4 kgm2 12 kgm2

principal axis angle α1 20◦ −14.87◦

front front frame
centre of mass (x,y) (0.968,0.652) m
mass 2 kg
moment of inertia I11 0.058579 kgm2

moment of inertia I22 0.0000588 kgm2

moment of inertia Izz 0.05879 kgm2

principal axis angle α1 19.02◦

TABLE 3. Parameters for the long version of the Midracer recumbent
bicycle (see figure 2 for the general layout of the Midracer recumbent
bicycle). Shown at the top is a sketch of the model drawn to scale. For
further explanation see Table 1.
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wheel base w 1.3 m
trail c 0.034 m
steer axis tilt λs 74.6◦

wheel rear front
diameter 0.6858 m 0.4860 m
mass 2 kg 2 kg
moment of inertia Ixx & Iyy 0.085513 kgm2 0.085513 kgm2

moment of inertia Izz 0.171026 kgm2 0.171026 kgm2

rear rear frame rider
centre of mass (x,y) (0.6,0.5) m (0.7,0.8) m
mass 10 kg 85 kg
moment of inertia I11 0.058579 kgm2 3.75 kgm2

moment of inertia I22 0.341421 kgm2 15.75 kgm2

moment of inertia Izz 0.4 kgm2 18 kgm2

principal axis angle α1 22.5◦ −14.87◦

front front frame
centre of mass (x,y) (1.188,0.662) m
mass 2 kg
moment of inertia I11 0.058579 kgm2

moment of inertia I22 0.0000588 kgm2

moment of inertia Izz 0.05879 kgm2

principal axis angle α1 19.02◦
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