
Quaternions, Finite Rotation and

Euler Parameters

Arend L. Schwab

Laboratory for Engineering Mechanics
Delft University of Technology

Mekelweg 2, NL 2628 CD Delft, The Netherlands
email: a.l.schwab@tudelft.nl

May 16, 2002

Son: Well, Papa, can you multiply triplets?
Father: No [sadly shaking his head], I can only add and subtract them.

(William Rowan Hamilton, Conversation with his sons (1843))

A quaternion is a collection of four real parameters, of which the first is con-
sidered as a scalar and the other three as a vector in three-dimensional space.
In addition, the following operations are defined. If q = (q0,q) = (q0, q1, q2, q3)
and p = (p0,p) = (p0, p1, p2, p3) are two quaternions, their sum is defined as

q + p = (q0 + p0,q + p), (1)

and their product (non-commutative) as

q ◦ p = (q0p0 − q · p, q0p + p0q + q× p). (2)

The adjoint quaternion of q is defined as q = (q0,−q) and the length or norm as
|q| =

√
(q ◦ q)0 =

√
q2
0 + q · q. Note that |q ◦ p| = |q||p|. There are two special

quaternions, the unit element 1 = (1,0) and the zero element 0 = (0,0). The
reciprocal of a quaternion q 6= 0 is q−1 = q/|q|2. The quaternion with a norm
of one, |q| = 1, is a unit quaternion.

If a quaternion is looked upon as a four-dimensional vector, the quaternion
product can be described by a matrix-vector product as

q ◦ p =
(

q0 −qT

q q0I3 + q̃

)(
p0

p

)
= Q

(
p0

p

)
,

p ◦ q =
(

q0 −qT

q q0I3 − q̃

)(
p0

p

)
= Q

(
p0

p

)
.

(3)

Here we have used the tilde notation for the antisymmetric matrix q̃ from the
vector q, which is defined by the matrix-vector notation for the vector cross
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product q× x = q̃x. This skew-symmetric matrix is

q̃ =




0 −q3 q2

q3 0 −q1

−q2 q1 0


 . (4)

The quaternion matrices Q and P commute, QP = PQ. The matrices of the
adjoint quaternion q are QT and Q

T
.

If we associate the quaternion x′ = (0,x′) with the three-dimensional vector
x′ and define the operation, with the unit quaternion q, as

x = q ◦ x′ ◦ q−1 = q ◦ x′ ◦ q, (5)

then this transformation, from x′ to x, represents a rotation. The resulting
quaternion x is a vectorial quaternion with the same length as x′. The case
of reflection, the other possibility, can be excluded. The rotation matrix R in
terms of the unit quaternions q can be derived from equation (5) as

x = (q2
0 − q · q)x′ + 2q0(q× x′) + 2(q · x′)q = Rx′ (6)

with

R =




q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q2q1 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q3q2 + q0q1) q2
0 − q2

1 − q2
2 + q2

3


 . (7)

This rotation matrix can also be written with the help of the quaternion matrix
representation according to

(
1 0T

0 R

)
= QQ

T
= Q

T
Q. (8)

The quaternion q in the rotation matrix R according to equation (7), is identified
as the set of Euler parameters for the description of finite rotation. According to
Euler’s theorem on finite rotation, a rotation in space can always be described
by a rotation along a certain axis over a certain angle. With the unit vector
eµ representing the axis and the angle of rotation µ, right-handed positive, the
Euler parameters q can be interpreted as

q0 = cos(µ/2) and q = sin(µ/2)eµ. (9)

Since the Euler parameters are unit quaternions the subsidiary condition,

q2
0 + q2

1 + q2
2 + q2

3 = 1, (10)

must always be satisfied. The quaternion x′ in (5) can now be associated with
the algebraic components of a vector in a body fixed frame and the quaternion
x as the corresponding components expressed in a space fixed frame.

The Euler parameters for successive rotation are given by the quaternion
product of the Euler parameters describing the individual rotations.

Before we derive the rotational equations of motion for a spatial rigid body
in terms of Euler parameters we have to express the angular velocities and
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accelerations in terms of the Euler parameters and its time derivatives. By
differentiation of the rotational transformation (5) as in

ẋ = q̇ ◦ x′ ◦ q + q ◦ x′ ◦ q̇, (11)

and substitution of the body fixed coordinates according to x′ = q◦x◦q, realizing
that q ◦ q is the unit element (1,0), the velocity reads

ẋ = q̇ ◦ q ◦ x + x ◦ q ◦ q̇. (12)

The scalar part of the products q̇◦q and q◦q̇ are zero, since q is a unit quaternion,
and the vector parts are opposite so we may write: q̇ ◦ q = (0,w) and q ◦ q̇ =
(0,−w). The velocity ẋ now has a zero scalar part, as expected, and a vectorial
part, ẋ = 2w × x, so ω = 2w. We conclude that the angular velocity ω
expressed in the space fixed reference in terms of the Euler parameters q and
its time derivatives is given by

ω = 2q̇ ◦ q or
(

0
ω

)
= 2Q

T
(

q̇0

q̇

)
. (13)

The inverse, the time derivatives q̇ of the Euler parameters for given q and ω,
can be found as

q̇ =
1
2
ω ◦ q or

(
q̇0

q̇

)
=

1
2
Q

(
0
ω

)
. (14)

Note that these time derivatives are always uniquely defined, opposed to the
classical combination of 3 parameters for describing spatial rotation as in for
example Euler angles, Rodrigues parameters or Cardan angles. The angular
velocities ω′ expressed in a body fixed reference frame can be derived in the
same manner, or by application of the rotational transformation (8), as

ω′ = 2q ◦ q̇ or
(

0
ω′

)
= 2QT

(
q̇0

q̇

)
, (15)

and with the inverse

q̇ =
1
2
q ◦ ω′ or

(
q̇0

q̇

)
=

1
2
Q

(
0
ω′

)
. (16)

The angular accelarations are found by differentiation of the expressions for ω
and ω′, resulting in

(
0
ω̇

)
= 2Q

T
(

q̈0

q̈

)
+ 2

( |q̇|2
0

)
, (17)

and expressed in the body fixed reference frame
(

0
ω̇′

)
= 2QT

(
q̈0

q̈

)
+ 2

( |q̇|2
0

)
. (18)

The inverse, the second order time derivatives q̈ of the Euler parameters in terms
of q, q̇ and ω̇, goes without saying. The equations of motion for the rotation of
a rigid body in a space with the components of the inertia tensor as matrix J′
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and the vector of applied torques M′, all at the centre of mass expressed in the
body fixed frame, are

J′ω̇′ = M′ − ω′ × (J′ω′), (19)

They can be expressed in terms of Euler parameters and its time derivatives by
application of the principle of virtual power and introduction of the Lagrangian
multiplier λ for the norm constraint (10) written as

εq = q2
0 + q2

1 + q2
2 + q2

3 − 1 = 0, (20)

resulting in the virtual power equation for a rigid body as

(M′ − J′ω̇′ − ω′ × (J′ω′))T δω′ = λδε̇q. (21)

The virtual constraint rate can be derived from (20) as

δε̇q = 2q0δq̇0 + 2qT δq̇. (22)

Substitution of these expressions and the expressions for the angular velocities
(15) and the angular accelerations (18) in the virtual power equation (21) and
taking arbitrary virtual Euler parameter velocities yields after adding the con-
straints on the accelerations of the Euler parameters as in (17) or (18), the
equations of motion for a rigid body expressed in terms of Euler parameters as


 4Q

(
0 0T

0 J′

)
QT 2

(
q0

q

)

2(q0,qT ) 0







q̈0

q̈
λ


 =


 2Q

(
0

M′

)
+ 8Q̇

(
0 0T

0 J′

)
Q̇T

(
q0

q

)

−2|q̇|2


 . (23)

The multiplier λ can for this single body be obtained by premultiplying the
first four equations by (q0,q)T and is indentified as twice the rotational kinetic
energy of the body

λ = 4
(

q0

q

)T

Q̇
(

0 0T

0 J′

)
Q̇T

(
q0

q

)
= ω′T J′ω′. (24)

The transformations of an applied torque, body fixed M′ or space fixed M,
to the torque parameters (f0, f), which are dual to the Euler parameters, are
apparently

(
f0

f

)
= 2Q

(
0

M′

)
, and

(
f0

f

)
= 2Q

(
0
M

)
. (25)
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