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A brief account is given of the finite element method, as it was developed
as a tool for kinematic and dynamic analysis of mechanisms.

‘ In the finite element method permanent contact between bodies is not
expressed by kinematic contraints, but by letting them have boundary points in
common. The dynamics of multi-body systems is derived on the basis of the
principle of virtual power. Both rigidity and deformability are introduced as
constitutive assumptions.

The ease, by which the deformability can be handled, leads to interesting
possibilities of modelling elements like sliders and gears. In the computer-
programs PLANAR and SPACAR full advantage is taken of these possibilities.
Thus user friendly, general purpose computer programs have been developed,
which fit in nicely with the finite element approach, that has proved to be so
powerful in modelling and analysing complicated problems of mechanics.

A few examples illustrate the capabilities of the method, and of the

computerprograms in their present state.

1. Introduction

Though presently the finite element method is usually put forward as a
numerical method for the determination of approximate solutions for continuum
problems, the method has been used in structural mechanics since the days of
Eiffel. Finite elements may be looked upon as models of mechanical behaviour in
their own right. This approach, that was developed so successfully for the
analysis of the strength and stiffness of complex structures, has proved to be
also particularly useful in the kinematic and dynamic analysis of mechanisms.

Classically the theory of kinematics and dynamics of mechanisms is
developed for rigid bodies. Contact between these bodies is expressed by con-
straint equations. In the finite element method permanent contact between
bodies is obtained by letting them have nodal points in common, and in these

nodal points they share some or all the coordinates of these points.
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bodies, in the finite element method we have to impose conditions on the defor-
mation modes, determined by the number of nodal coordinates of each finite
element and its number of degrees of freedom as a rigid body. The multiple
rigid body situation is obtained by putting all deformation modes equal to zero.

The expressions for the rates of deformation represent linear mappings of
the space of velocity components onto the space of rates of deformation. The
null space of such a linear mapping determines at any moment the space of the
degrees of freedom of the mechanism with rigid links. But because of the fact
that we start out from expressions for the deformation modes as nonlinear
functions of the coordinates, it is very easy to extend the analysis to the
case of mechanisms with deformable links. Then constitutive equations for the
deformations have to be supplied. They may express simply linear elastic
behaviour, but by these constitutive equations we can also model actuators and
other active elements in a mechanism,

The equations of motion for multi-body systems are derived by the principle
of virtual power. If the generalized coordinates of the mechanism with rigid
links together with possible modes of deformation are taken as the system para-
meters we obtain a nonlinear system of ordinary differential equations of
second order. The expressions for the strains, which are determined as non-
linear functions of the nodal coordinates, are used as correctors in a
predictor-corrector integration scheme.

The finite element theory for kinematics and dynamics of mechanisms was
originated in [1]. Since this original publication computerprograms have been’
developed, that can handle the zero'th, the first, and the second order
kinematics of plane and spatial mechanisms. These programs, PLANAR and SPACAR,
are the product of a fruitful cooperation between the Laboratory for Production
Automation and Mechanisms and the Laboratory of Engineering Mechanics of the
Department of Mechanical Engineering of the TH-Delft. In the latter laboratory
a program called DYNAMO was set up for the analysis of mechanisms with flexible
links.

Some results obtained with the aid of these computerprograms will illus-
trate the potential of the finite element theory for the kinematics and

dynamics of mechanisms.

2. Finite Element Representation of Mechanisms

Let us first consider the simplest possible link in a mechanism: a con-
necting rod between two hinges (Fig. 1). For motions in a plane the four coor-
dinates of the endpoints of the link determine not only its position, but also

its length.
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Fig. 1. Connecting rod between two hinges.

If the link is rigid the change of length must be equal to zero, which is
the constraint condition for this link as part of a mechanism with rigid links.
However we begin by defining explicitely the deformation mode of this link by

e = [xd-xD2 + (xF-x)2 - 221/(242). (2.1)

The reason that we take the difference of the square of the lengths in the
deformed and the undeformed state is that then we have only derivatives of €
with respect to the coordinates up to the second order.

Now we can model a simple four-bar linkage (Fig. 2}.

For planar motion the nodal coordinates are elements of a eight-dimensional
vectorspace. We may consider this space as the direct sum of the space of the
coordinates of the moving nodes (x§), and the space of the coordinates with
fixed values (XZ). With four bars we have four deformation parameters, defined

as nonlinear functions of the coordinates.

c
k

e, =D, (x0, x), i=1...4, Xk + & =1...8, (2.2)
i i 2

Fig. 2, Four-bar linkage.

If we take the bar between the nodes 1 and 4 as a base, then the elements

of the vectors, x; and xz, are given by
CT | 142 2 43 .3
X lx} =5 = =51,
oT

= 1 1 o b '
= ‘xl %, X{ x2|. (2.3)
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For a motion with undeformable links at any moment the condition

© 3=, e =6 = (2.4
[0 R T Y -4)

D
must be fulfilled. We may look upon the equations (2.4) as a linear mapping of
the space of velocity components, ic, onto the space of rates of deformation.
Undeformability of the links implies that for motion the velocity components
must lie in the null space of the linear mapping.

Now we note, as a result of linear algebra theory, that for any linear
mapping the matrices, that represent the mapping, can be given the following

form by linear transformations and by interchanging rows as well as columns.
-1

—
jos)
*
o
o

X = . (2.5)

With the rows of
z¥T = [-8*T 1] (2.6)

we have a basis for the null space of the linear mapping, transformed to the

space of velocity components. With the aid of
-1
o Dcc o
> o= (2.7)

we can express any motion of the mechanism by

«C - (o] . * *Im
X = hg &5t By % (2.8)

We observe that by the particular choice of the basis for the null space
determined by (2.6), certain velocity components, (ﬁg), are singled out as
generalized coordinates of the mechanism with rigid links. In the case of

deformable links we have from (2.5) the continuity conditions:
. T
Ze=0, Z=[-B 1], (2.9)

In (2.6) and (2.7) we have the basis for a kinematic analysis of our
four-bar linkage of Fig. 2. The generalization to more complicated mechanisms
is easy to visualize. |

The second order kinematics of a mechanism is obtained from (2.4) by
simple differentiation.

C -C C »C C

Ei = i,k X, + Di,kl xk Xg - (2.10)
Here again we have the linear mapping Di K’ and now we can write
14
-1
x] =€ _ Dcc 2 _ .c .C
I B*| x . ol ¢ D,kl % Xl) (2.11)
0 0 -B I
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which leads to the' expressions:

ko = zl‘zi (éi-D?l’m é; 5{;) +E qu“ (2.12)
For the determination of the zero'th order kinematics of mechanisms with
rigid links (e = O, € = 0) the equations (2.8) must be integrated. In a step by
step procedure the expressions (2.8) and (2.12) are used as predictors and the
conditions Di(xi, xi) = 0 as correctors. A detailed account of this develop-
ment is given in [1]. It formed the basis for the computer programs PLANAR and
SPACAR, by which a complete kinematic aﬁalysis can be made of almost any
mechanism. Even on microcomputers we can deal with fairly complicated mechan-
isms. We shall discuss later on how in these programs by means of special

finite elements sliders, gears and other components can be included.

3. Equations of Motion

Also for the derivation of the equations of motion we start out from the
simplest finite element in a mechanism: the connecting rod between two hinges.
We note that by taking (2.1) as the sole possible deformation mode, we rule
out bending deformations. To include bending it is necessary to introduce in
the nodal points the orthogonal transformations for the basevectors, that can
represent finite rotations.

At first we shall limit our description to the linear velocity distribu-

tion (Fig. 1),
‘P g 1-¢

X X, X
1=x; Cll IE=S/Q/I 05551 (3'1)
*3 2 %2 2

thereby excluding bending deformations.

According to the principle of virtual power, the power of the forces
acting on the mechanism must be equal to zero for all velocity distributions
that are free of deformation. The nodal forces are elements in the dual space
of the space of nodal velocities, In the case of dynamics we have to add the
inertial forces to the external forces acting in the nodal points. In order to
derive the contribution of the inertial forces, we can use the velocity dis-
tribution (3.1) and the acceleration distribution derived therefrom. For one

link we find for a mass per unit length m:

n

—{}‘Jl’igi‘f-}}g-\zo1o %

g

1 ..
-2 f m x +x dg
g 22

g

0 2 0

N
»

- xTME . o 1 0 (3.2)

DELFT PROGRESS REPORT (1985) 10 165

The matrix M is known in the finite element theory as the consistent mass~
matrix for the distribution (3.1).

Now we can formulate the principle of virtual power for our four-bar
linkage of Fig. 2 by

c 5
ik "k

*C C «C «C *C
x_ (f -M x)—OVXkE{kuD

AR S W ) = 0}. (3.3)

We may include the subsidiary conditions in the equation of virtual power

by means of lagrangian multipliers. We then have

*C (o} ..C _ (o4 » C L C
X, (fk - Mkl xz) = Oi Di,k X A4 xk (3.4)
or
C ..C Cc
+ = £,
Oy Py T M Fp T K (3.5)

The lagrangian multipliers are to be interpreted as generalized stresses.
It is easily seen that in the static case (iz = 0} for links of the type of
Fig. 1 they represent the normal forces in the trussmembers.

Again we meet a linear mapping; this time represented by a matrix, which
is the transposed matrix of the mapping (2.4). By similar transformations as

applied to (2.4) in order to arrive at (2.5), we now find

1 8] o= [[0°T171 0] (£° - w5 (3.6)
B N
ox
o, = Iy (£ -M_ )+ 7 0;, (3.7)
z¥ (f; -, S&E) = 0. (3.8)

In the case of undeformable links (e = 0) with a statically determinate
structure (ZDi = 0) by substitution of (2.8) and (2.12) into (3.8) we can
reduce the equations of motion to a system of differential equations for the

. . m
generalized coordinates x .

T -
z*  mz* 7 = 2xT (£% _ 5Oy, (3.9)
with
c .C .C .c .m
= -
95 Di,mnxmxn ; X ZInp xp . (3.10)

It should be realized however that the elements of the matrices 2Z* and ¥°
depend nonlinearly on the nodalcoordinates, while for more general elements

this is also the case for D, and the inertial terms. Hence a numerical
r

integration of the system (3.9) must be accompanied by a simultaneocus determi-

nation of the zero'th order kinematics, such as it was indicated in the



i et
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previous section. Because of the statical determinacy the generalized stresses
Gi can be calculated after any step in the integration process. The initial
conditions for x; and ig follow from the initial conditions for the nodal
coordinates as soon as the analysis of the linear mapping (2.4) has furnished
the coordinates, which are singled out as the generalized coordinates xm.

If we have to take into account one or more deformation modes in tﬁe
structure the equations of motion and the equations for the generalized
stresses are directly coupled by these deformation modes, unless the deforma-
tions are prescribed as functions of time. It will be clear that in the latter
case we are not dealing with simple elements such as the connecting rod of
Fig. 1. As we shall see in section 4 the role of actuators in mechanisms can be
described by means of elements with prescribed deformations.

If the deformations depend on the generalized stresses, then the equations
(3.7) and (3.8) have to be treated as a coupled system. Again by substitution
of the expressions (2.8) and (2.12) we arrive at the reduced system of differ-

. . R R . m
ential equations; this time in terms of the systemparameters .x and €

VA ) o+ [0 o] | x| _

Tz 2T | & 0o s]|e
XT

= | T | - - Tor Sl (3.11)
> Z"S°D
with

g, =05 %% x°, L =3° b +zx X (3.12)

1 1,mn m n m mi 1 mp P

The analysis of the linear mapping (2.4) provides the generalized coordinates
xm, while the dual linear mapping, occurring in (3.5), determines whether there
are any statically indeterminate parts in the structure. If this is the case,
then the transformed matrix in (3.6) singles out the stresses, which may be
denoted as the redundant stresses 0. For elastic links these redundant
stresses are uniquely determined by the corresponding deformations Dr(x;, xi)
and for purely viscous links by the rate of the corresponding deformations.
For visco-elastic behaviour or for more general constitutive equations the
momentary value of the redundant stresses is history dependent.

The computerprogram DYNAMO [2] is based upon the system (3.11) and conse-
quently it can deal with mechanisms with elastic links as well as with links
with prescribed deformations. Essential for the program is the incorporation
of a numerical integration routine, that can automatically adjust the time
step and the order of integration. As is wellknown high natural frequencies,
resulting from elastic, but very stiff links require a relatively small time

actoenrn
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4, Illustrative Examples

It is not possible within the context of this paper to discuss in any
detail the various finite elements, that have been devised to represent the
mechanical behaviour of components of mechanisms. Fig. 3 gives a picture of
elements, that are used in the following examples.

For the numerical determination of the angular orientation we found Euler
parameters most suitable. As soon as the angular orientation has to be taken
into account the configuration can no longer be determined solely by vectors,
because the rotations can only be characterized by orthogonal transformations
of the base vectors. A vector with direction cosines coso, cosB, cosy and an
angle of rotation u about this vector determines the Euler parameters by

AO = cosky, Al = cosasinky, Az = cosBsinku, AB = cosysinky, (4.1)

The orthogonal transformation is quadratic in these parameters.

2 2 2 _ 42 -
AO + Xl + AZ A 2(X, A AAL) 2(A1A3 + AOA2)

3 172 = "0”3
- 2 _ 32 4 32 _ 32 o
R = 2(X1X2 + AOA3) AO Al + A2 A3 2(A2A3 Aokl) (4.2)
- 2 _ 32 _ 32 4 2],
2(A1X3 AOAZ 2(A2A3 + Aokl) AO Al AZ + X3
BEAM PLGEAR

position parameters deformation parameters| | position parameters |deformation parameters

(AOA1K2K3M

o~

(RohqAohglp

’ (xyz)q

Alxyz)p

HINGE DIsC

position parameters position parameters | deformation parameters
(A A a2l €182836,565

é5=0,é5=0 e
conditions for
rolling without
slipping

5
@”

(Ao AAha)p

Fig. 3. Finite element representations of mechanism components

(AL, = elongation, B = bending, T = torsion)

The transformation matrices for expressing time derivatives of Euler parameters
in terms of vector components of angular velocities and accelerations are
linear in the parameters and require therefore little time of computation.

The subsidiarv condition for the Euler parameters,
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xé + A% + A% + x% -1 =0 (4.3)

is of similar form as an undeformability condition (e = 0) and is therefore
introduced in the description under the name A-element.

As it was already mentioned the inertial terms are generally more compli-
cated than the expressions given in (3.2). Only if the velocity distribution is
represented by isotropic polynomials a massmatrix, independent of orientation,
is obtained. Otherwise there is a dependence on orientation, which can be
expressed in terms of Euler parameters. Rotating subsystems, forming gyrostats,
may be represented as lumped rotational inertias having particular dynamic
properties. Details are given in [2] and [3].

Our first example is the 3D, so-called turbula mechanism of Fig. 4. Here
we meet the beamelement and the hinge-element, both requiring the description of
arbitrarily large rotations. The orthogonal transformations in the expressions
for the deformation parameters, in [4] defined in terms of Euler angles, were
for mechanisms expressed in terms of Euler parameters in order to avoid the
singularity orientations, which occur in the description by Euler angles. The
system parameters €, besides bending of beams, now also represent relative
rotations in hinges. These can be split up in prescribed system parameters, em,
and calculable parameters, ec. The prescribed rotation, eé, gives rise to
relative rotations in the other five hinges and determines the path of coordi-

nate 8, as pictured in Fig. 4.

4 12 20 28 32

Element 1, 2, 4, 6, 8, 9: hinge 3 projections of the path

Element 3, 5, 7 : beam of coordinate 8.
m (e} = - —

< =gt x = ix, Xyqr Zyqr Ao >‘11}

m c

St - e o o oD

Fig. 4. Kinematic analysis of 3D turbula mechanism [5].

Since gears are important components of mechanisms their kinematical

behaviour is also described bv finite elements. After earlyv versions. discussed
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in [6], the third author devised an element, that more explicitely represents
the characteristics of a gear pair. Details will be published soon. Fig. 5

shows as an example the kinematic analysis of a 2D gear-bar mechanism with

four rests.

y
=)
Fégt 5
w ]
=
—
3 F
I
z
A
S'TM aBg
% 88%
| 8299
derde]
ol T 90° | 1807~ 270° _~—"360°
I CRANK ANGLE
element 4: plgear 0, 1 and 2-order transfer function of
m [ = £ tion of el.
x = {g} x = {8, %, v} By as functi T
1 3 7
" = {el}, 5 = i)

Fig. 5. Kinematic analysis of 2D gear-bar mechanism with 4 rests.

Our third example deals with the dynamic behaviour of a 2D crank-slider
mechanism. The connecting rod is elastic in bending. The other links are rigid.
The results could be compared with results in the literature, obtained as a
result of an ad hoc analysis for this particular case. Computed with the
program DYNAMO our results are just an illustration of the capabilities of

this program (Fig. 6).
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A deformed center line

p

CRANK ANGLE

1 1—.012

j—-,024

Element 1 : pltor Displacement of the midpoint of

Element 2, 3: plbeam element 3 with respect to the

° undeformed center line, ie. v.

{Q} X = {611 ;31 Y7}

m 1 c _ d _ 3 3
€ {eT} e = {g} e = {EBPZ' EBQZ}

m
X

1}

)

Fig. 6. Dynamic analysis of 2D crank-slider mechanism with

elastic connecting rod.

As it was already mentioned rotating subsystems can be included in the
dynamical analysis as so-called gyrostats; lumped rotational inertias having
particular dynamic properties. The gyroscope shown in Fig. 7 consists of a
uniform thin disk spinning freely about the end of a rigid massless rod. The
other end is supported at a fixed point 0. The initial conditions are:

. . 2a? e

8(0) =0, 8(0) =0 (0) =0, $(0) = —=— [q],

a“+44

. >
where P/0 is the initial precession rate and § is the total spin vector. For

il

" these conditions the rod moves through the bottom position at 0 = -5

z 19 z

Lel]
<

Fig. 7. Dvnamice of a3 auracemana
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We have room for one more example: the kinematic analysis of a 3D bycicle.
For a wheel on a plane four deformation parameters can be defined. Sliding can
only be looked upon as two non-integrable rates of deformation. Since it is
kinematics we are dealing with, we have to prescribe three rotations for a

motion of the bycicle. The model is shown in Fig. 8.

Computer graphic representation of

Element 1, 2, 3, 4, 7, 9: hinge the analysis.

Element 6, 8 . beam

Element 5, 10 . disc

L=d{g =0}

m
€

i

c
, €2} e = {el, €3, e;}

y o7
leqr eqr g o B

Fig. 8. Kinematic analysis of 3D bycicle.

If the analysis is extended to dynamic behaviour by equations of the type
(3.11), then a control system has to be added in order to direct the bycicle
along a given path. In fact the combination of our present tools for dynamic
analysis of mechanisms with the tools of control theory is a challenge for the
coming years. In particular this combination will be studied in connection with

work in the field of robotics.
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Motivated by questions concerning the possibility of parametrically
excited resonance and instability of certain types of marine structures,
analysis has been made of the non-stationary response of a homogeneous
non-linearly damped second-order system with randomly fluctuating restoring
coefficient and subjected to some initial disturbance at time zero. The

analysis has resulted in some new solutions which are discussed in this paper.

paper.

1. Introduction

There is considerable interest in the phenomenon of unbounded solutions
of second-order differential equations with restoring force coefficients which
vary in magnitude with time. Part of this interest comes from ocean
engineering circles and concerns the possible unstable motion of certain types
of marine structures. Examples are roll motion of ships or, more recently,
horizontal motion of compliance structures for oil and gas production.

Conclusions with regard to unstable motion often refer to unbounded
solutions of the Mathieu equation. Results thus obtained, however, are only
valid for second-order systems with sinusoidally varying coefficients. In
marine applications, rather than sinusoidally, restoring coefficients vary
randomly in magnitude with time. Some recent results for this new type of
problem are discussed. Effects of non-linear damping are considered and
implications for marine structures are indicated.

A summary of the adopted solution procedure is presented in Figure 1.




