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Abstract
The bicycle is an intriguing machine as it is laterally un-

stable at low speed and stable, or easy to stabilize, at high
speed. During the last decade a revival in the research on
dynamics and control of bicycles has taken place [1]. Most
studies use the so-called Whipple [2] model of a bicycle. In
this model a rigid rider is rigidly connected to the rear frame.
However, from experience it is known that some form of con-
trol is required to stabilize the bicycle and/or carry out track-
ing operations. This control is either carried out by steering
or by performing some sort of upper body motions. Note that
in both cases the system is underactuated. The precise control
used by the rider is still under study [3]. This paper addresses
the question whether the underactuated bicycle is controllable
by only steering or upper body motion in the forward speed
range of 0 to 36 km/h. Whipple-like models are studied with
either steering or upper body control. It is shown that at cer-
tain specific forward speeds some modes are uncontrollable.
However, either the forward speed is extremely low or the
uncontrollable modes are all stable modes and are therefore
of no concern to the rider.

1 Introduction
The bicycle is an intriguing machine as it is laterally un-

stable at low speed and stable, or easy to stabilize, at high
speed. During the last decade a revival in the research on dy-
namics and control of bicycles has taken place [1]. Most stud-
ies use the so-called Whipple model [2] of a bicycle. In this
model a hands-free rigid rider is fixed to the rear frame. How-
ever, from experience it is known that some form of control
is required to stabilize the bicycle and/or carry out tracking
operations. This control is either done by steering or by per-
forming some set of upper body motions. The precise control

Figure 1. Rider posture on the Stratos bicycle with a forward leaned
body and stretched arms on the handle bars. The degrees of free-
dom are the rear frame lean angle φ, the upper body lean angle θ,
the steer angle δ, and the forward speed v. The upper body pitch
and twist are passive motions, in the sense that they do not add any
degrees of freedom to the system.

used by the rider is currently under study [4; 3].
Here we focus on the controllability of the system. We

consider two inputs: steer torque or upper body lean torque.
For the model we use an extended Whipple model where the
upper body with arms, connected to the handle bars, has been
added in two different ways, guided by observations [4; 3].
In the first posture, Fig 1, the rider leans forward and holds
the handle bars with stretched arms. In the second posture,
Fig 2, the rider sits straight up, with flexed arms connected
to the handle bars. Apart from the lateral lean motion of the
upper body, these models do not add any degrees of freedom
to the original Whipple model [5].

Among the few people who have investigated control-
lability of a bicycle, Nagai [6] used a Whipple like bicycle
model with steer angle and upper body angle input control.
He finds one non-zero forward speed and one mass distribu-
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Figure 2. Rider posture on the Browser bicycle with an upright body
and flexed arms on the handle bars. The degrees of freedom are the
rear frame lean angle φ, the upper body lean angle θ, the steer angle
δ, and the forward speed v. The motion of the arms, connected to
the handle bars, are passive, in the sense that they do not add any
degrees of freedom to the system.

tion which result in an uncontrollability for the system. Sef-
fen et al. [7] investigate uncontrollability for a Whipple like
bicycle model and introduces an index which should indicate
the difficulty of riding. The index is based on the ratio of the
singular values of the controllability matrix (7). Neither work
addresses whether the uncontrollable mode is stable or unsta-
ble. It could well be that the uncontrollable or near to uncon-
trollable mode is a stable mode of the system and therefore of
no concern to the rider. This paper tries to resolve that prob-
lem by determining the forward speed at which the bicycle is
uncontrollable and then identify if this is a stable or unstable
mode. It also introduces a transfer function for modal control
from which controllability can be determined in a continuous
way.

The paper is organized as follows. First the bicycle plus
rider model is presented. Next the controllability is inves-
tigated for two types of posture, bend forward with straight
arms and straight up with flexed arms. The paper ends with
some conclusions.

2 Bicycle plus Rider Model
The basic bicycle model used is the so-called Whip-

ple [2] model which recently has been benchmarked [1]. This
model is then extended with an upper body which is able to
lean laterally. This basic model, see Figure 3, consists of
five rigid bodies connected by revolute joints. The arms are
then connected to the handle bars in two different manners,
stretched or flexed, see Fig. 1 and 2, where necessary hinges
are added to the system in such a manner that no degrees of
freedom are added to the system. The contact between the
knife-edge wheels and the flat level surface is modelled by

φ

δ

R F

H
B

θ
U

v

Figure 3. The extended bicycle model: five rigid bodies (rear wheel
R, rear frame B, upper body U, front handlebar assembly H, front
wheel F) connected by four revolute joints (rear hub, saddle, steering
axis, front hub), together with the coordinate system, and the degrees
of freedom: forward speed v, rear frame lean angle φ, steer angle δ,
and upper body lean angle θ. Note that the arms are connected in
two different ways to the steering assembly, see Fig 1 and 2.

holonomic constraints in the normal direction and by non-
holonomic constraints in the longitudinal and lateral direc-
tion. The resulting non-holonomic mechanical model has
four velocity degrees of freedom: forward speed v, rear frame
lean rate φ̇, steer rate δ̇, and the upper body lean rate θ̇.

For the stability and controllability analysis of the lateral
motions we consider the linearized equations of motion for
small perturbations about the upright steady forward motion.
They are expressed in terms of small changes in the lateral
degrees of freedom (the rear frame roll angle, φ, the steer
angle, δ, and the upper body lean angle θ) from the upright
straight ahead configuration (φ,δ,θ) = (0,0,0), at a forward
speed v, and have the form

Mq̈+ vC1q̇+[gK0 + v2K2]q = f, (1)

where the time-varying variables are q = [φ,δ,θ]T and the
lean and steering torques f = [Tφ,Tδ,Tθ]

T . The coefficients in
this equation are: a constant symmetric mass matrix, M, a
damping-like (there is no real damping) matrix, vC1, which
is linear in the forward speed v, and a stiffness matrix which is
the sum of a constant symmetric part, gK0, and a part, v2K2,
which is quadratic in the forward speed. The forces on the
right-hand side, f, are the applied forces which are energeti-
cally dual to the degrees of freedom q.

The complete model of the bicycle with passive rider
was analyzed with the multibody dynamics software package
SPACAR [8]. SPACAR handles systems of rigid and flexible
bodies connected by various joints in both open and closed
kinematic loops, and where parts may have rolling contact.
SPACAR generates numerically, and solves, full non-linear
dynamics equations using minimal coordinates (constraints
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are eliminated). SPACAR can also find the numeric coeffi-
cients for the linearized equations of motion based on a semi-
analytic linearization of the non-linear equations.

For the modelling of the geometry and mass properties
of the rider, the method as described by Moore et al. 2009 [9]
is used. Here the human rider is divided into a number of sim-
ple geometric objects like cylinders, blocks and a sphere of
constant density. Then with the proper dimensions and the
estimates of the individual body part masses the mechanical
models can be made. The geometry and mass properties of
the two bicycles and the rider used in this study where mea-
sured by the procedure as described in [9] and the results are
presented in [5].

Then, with the coefficient matrices the characteristic
equation,

det
(
Mλ

2 + vC1λ+gK0 + v2K2
)
= 0, (2)

can be formed and the eigenvalues, λ, can be calculated.
These eigenvalues, in the forward speed range of 0 ≤ v ≤ 10
m/s, are presented, for example for the Stratos bicycle with
forward leaned rider with stretched arms on the handle bars,
in Fig. 4a. In principle there are up to six eigenmodes,
where oscillatory eigenmodes come in pairs. Two are signif-
icant and are traditionally called the capsize mode and weave
mode. The capsize mode corresponds to a real eigenvalue
with eigenvector dominated by rear frame lean: when un-
stable, the bicycle just falls over like a capsizing ship. The
weave mode is an oscillatory motion in which the bicycle
sways about the headed direction. The third eigenmode is the
overall stable castering mode, like in a caster wheel, which
corresponds to a large negative real eigenvalue with eigenvec-
tor dominated by steering. The remaining pair of eigenmodes
are the upper body lean motion relative to the rear frame,
where the positive root in this pair corresponds to falling,
whereas the negative root corresponds to the time reversal of
this falling. This pair usually shows little dependency in the
forward speed. The upper body lean mode is always unstable
but will be stabilized in the usual manor like in sitting upright
at rest.

3 Controllability
To investigate the controllability of the bicycle rider sys-

tem we rewrite the linearized equations of motion (1) into
a set of first order differential equations, the so-called state-
space form

ẋ = Ax+Bu, (3)

with the state vector x and the control input vector u. For the
bicycle the state vector is x = [φ,δ,θ, φ̇, δ̇, θ̇]T and the control

input vector is u = [Tδ,Tθ]
T . Since we wish to address the

control inputs separately, we split the input vector u and the
associated matrix B into two scalars and two associate vec-
tors,

ẋ = Ax+BδTδ +BθTθ. (4)

For the bicycle rider system the coefficient matrix A and vec-
tors Bδ and Bθ are given by

A =

[
0 I

−M−1(gK0 + v2K2) −M−1(vC1)

]
, (5)

Bδ =


0

M−1

0
1
0


 , Bθ =


0

M−1

0
0
1


 . (6)

3.1 Standard approach
In the standard approach to determine controllably of a

linear dynamical system like (4), the controllability matrix

Q j = [B j,AB j,A2B j, · · · ,Ak−1B j], (7)

is formed and if this controllability matrix has full rank k,
where k is the order of the system and equal to the number of
states, then the system is fully controllable by input j =(δ,θ).
Here, we investigate rank deficiency by setting the determi-
nant of Q j(v) to zero. With the forward speed v as a parame-
ter, this leads to a characteristic equation in v. The solutions
are the forward speed for which the system is uncontrollable,
which we call vu. The corresponding eigenvector, vu, is the
null space of the transpose of the corresponding controllabil-
ity matrix, vu = null(QT

j (vu)). Since this is also an eigenvec-
tor of the system matrix A(vu), the corresponding eigenvalue
λu can be found from the definition Avu = λuvu. This proce-
dure has been applied to both bicycle plus rider models and
the results are presented in Tables 1,2 and Fig. 4,5.

For the Stratos bicycle with the forward leaned rider with
stretched arms on the handle bars, controlled by steer torque
control, Table 1 Fig. 4a, we find four uncontrollable forward
speeds. However, only the one at 1.8174 m/s concerns an un-
stable mode, but since this is an upper body lean mode it is of
no concern to the controllability of the bicycle. If we consider
only upper body lean torque control then there are two uncon-
trollable forward speeds, but again only one, now at 0.0084
m/s, concerns an unstable mode. This mode is the prequel
to the oscillatory weave mode but since the speed is almost
zero this is again of no concern to the practical control of the
bicycle. We conclude that this bicycle rider configuration is
fully controllable by either steer torque control or upper body
torque control.
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Steer torque control, Tδ

vu [m/s] λu [rad/s] (φ,δ,θ)u [rad] mode

0.0049 −3.0150 (0.13, 0.59,−0.80) capsize

1.5477 −3.0150 (0.15, 0.72,−0.68) capsize

1.8174 7.8252 (0.15, 0.75,−0.65) lean

4.5533 −7.8252 (0.06,−0.28, 0.96) lean

Upper body lean torque control, Tθ

vu [m/s] λu [rad/s] (φ,δ,θ)u [rad] mode

0.0084 3.0164 (0.13, 0.59,−0.80) w1

1.5004 −3.0219 (0.15, 0.72,−0.68) capsize

Table 1. Forward speed vu at which the Stratos bicycle with the
forward leaned rider with stretched arms on the handle bars from
Fig. 1, is uncontrollable by either steer torque control Tδ or upper
body lean torque control Tθ together with the corresponding eigen-
value λu and eigenvector coordinates (φ,δ,θ)u, with rear frame lean
angle φ, steer angle δ and upper body lean angle θ, together with the
mode description, see also Fig. 4

Steer torque control, Tδ

vu [m/s] λu [rad/s] (φ,δ,θ)u [rad] mode

0.0124 −2.8979 (0.16, 0.48,−0.86) capsize

0.8476 6.5908 (0.14, 0.44,−0.89) lean

1.0119 −2.8979 (0.14, 0.44,−0.89) capsize

4.0951 −6.5908 (0.01,−0.26, 0.97) lean2

Upper body lean torque control, Tθ

vu [m/s] λu [rad/s] (φ,δ,θ)u [rad] mode

0.2722 2.9013 (0.15,0.47,−0.87) capsize

1.2336 −2.9120 (0.13,0.42,−0.90) caster

Table 2. As Table 1 but now for the Browser bicycle with an upright
rider and flexed arms on the handle bars from Fig. 2, see also Fig. 5

For the Browser bicycle with an upright rider and flexed
arms on the handle bars we first identify that the eigen-
value structure differs vastly from the Stratos bicycle with
rider configuration. Whereas the Stratos had a stable forward
speed range, between 6.9 and 8.7 m/s, the Browser configura-
tion is always unstable. Although the weave mode is always
stable, there is now a capsize mode which is always unstable.
For steer torque control on the Browser configuration, Ta-
ble 2 and Fig. 5a, we find again four uncontrollable forward
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Figure 4. a) Eigenvalues λ from the linearized stability analysis for
the Stratos bicycle with the forward leaned rider with stretched arms
on the handle bars from Fig. 1, where the solid lines correspond to
the real part of the eigenvalues and the dashed line corresponds to
the imaginary part of the eigenvalues, in the forward speed range of
0 < v < 10 m/s, together with forward speeds for which the bicycle is
uncontrollable by either steer torque (◦−) or upper body lean torque
(• - -). b) Magnitude of the transfer function of the eigenmode rate
ζ̇i to the steer torque control torque Tδ for this bicycle model. c)
Magnitude of the transfer function of the eigenmode rate ζ̇i to the
upper body control lean torque Tθ for this bicycle model.

speeds, where only the one at 0.8476 concerns an unstable
mode. This is again an upper body lean mode and therefore
of no concern to the stability of the bicycle. For upper body
lean control we have two controllable speeds, where only the
one at 0.2722 m/s concerns an unstable capsize mode. But
since this is also at a very low speed, one can say that, from a
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Figure 5. a) Eigenvalues λ from the linearized stability analysis for
the Browser bicycle with an upright rider and flexed arms on the han-
dle bars from Fig. 2, where the solid lines correspond to the real part
of the eigenvalues and the dashed line corresponds to the imaginary
part of the eigenvalues, in the forward speed range of 0 < v < 10
m/s, together with forward speeds for which the bicycle is uncontrol-
lable by either steer torque (◦−) or upper body lean torque (• - -).
b) Magnitude of the transfer function of the eigenmode rate ζ̇i to the
steer torque control torque Tδ for this bicycle model. c) Magnitude
of the transfer function of the eigenmode rate ζ̇i to the upper body
control lean torque Tθ for this bicycle model.

practical point of view, this configuration is also fully control-
lable by either steer torque control or upper body lean torque.

3.2 Modal controllability
The approach from above, results in a discrete set of ve-

locities for which the bicycle is uncontrollable. It does not

tell us anything about the ease or difficulty by which the bi-
cycle is to control in the neighborhood of these uncontrollable
speeds. To investigate that, we follow a somewhat different
approach and look at the modal controllability.

We start with the system matrix A for which we de-
termine all eigenvectors vi from AV = VΛΛΛ, with the modal
matrix V where its columns are the eigenvectors vi and the
diagonal matrix ΛΛΛ with the eigenvalues λi on the diagonal.
If the eigenvalues are distinct and the eigenvectors span the
complete state space we can transform the state equations
(4) to their modal form by substitution of x = Vζ and pre-
multiplying by the inverse of the modal matrix V−1, resulting
in the modal state equations,

ζ̇= ΛΛΛζ+ B̄δTδ + B̄θTθ, (8)

with the modal coordinates ζ and the modal control input vec-
tors,

B̄δ = V−1Bδ, B̄θ = V−1Bθ. (9)

The big advantage of the modal transformation is that these
modal state equations are now decoupled,

ζ̇i = λiζi + B̄iδTδ + B̄iθTθ, i = 1 · · ·k, (10)

and that the controllability follows directly from zero entries
in the control matrix B̄. If the entry B̄i j is zero then eigen-
mode i is uncontrollable by input j. Moreover, around the
uncontrollability we can look at the magnitude of the entry
B̄i j which tells us the relative easy by which eigenmode i can
be controlled by input j. The entries B̄i j are in fact the trans-
fer functions for the rate of eigenmode i with respect to the
input j. These transfer functions for the two bicycle rider
models are shown in Fig. 4bc and 5bc for the unstable or
partly unstable eigenmodes only.

Some general remarks about these transfer functions.
They are clearly zero at the uncontrollable speeds and we
see a low gain around these speeds, indicating difficulty to
control. It is interesting to see that for the two types of
control, steer torque en upper body lean torque, the trans-
fer function have similar shape but different values. The steer
torque transfer is larger by a factor of five compared to the
upper body lean transfer, indicating easier control by steer-
ing than by body lean. The only distinction is the lean mode
which is of course easier to control by upper body lean. Fur-
thermore, we see that around double roots, that is were two
real eigenvalues coalesce, the transfer functions become very
large. This is a defect of the modal method. At such a dou-
ble root the system can become defective in the sense that the
eigenvalues do not span the entire space of the system. Then
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the inverse transformation V does not exist and a more gen-
eral method for defective or near defective systems should
be used [10]. Finally, from these transfer functions we see
that the for Stratos bicycle configuration, Fig. 4, the unsta-
ble weave mode at low speed and the unstable capsize mode
at high speed can easily be controlled by either steer torque
or upper body lean torque, where steering seems the easier
of the two. For the Browser bicycle configuration, Fig. 5,
the unstable capsize mode at high speed can easily be stabi-
lized by either steer or upper body lean, where again steering
seems easier. However at lower speed it gets more difficult
to control this mode irrespective of the type of control. Note
that the unstable upper body lean mode, which is present in
both models, will be stabilized in the usual manor like in sit-
ting upright at rest, and is of no real concern to the control of
the bicycle.

4 Conclusions
We have shown that a Whipple like bicycle with ex-

tended rider model can be controlled by either steer torque or
upper body lean torque in the practical forward speed range
of 1 to 10 m/s. Although the underactuated system has some
forward speeds for which the system is uncontrollable, these
are either stable modes or at near to zero forward speed, and
therefore of no concern. To investigate and compare the con-
trollability around uncontrollable speeds we have introduced
the transfer functions of the eigenmode rates with respect to
the control inputs. These transfer functions give some insight
into the ease of control.

Future work is directed towards the investigation of
modal controllability around the double roots where the sys-
tem is defective or near-defective.
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