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ABSTRACT 
During the past decades Kalker developed a number of wheel-
rail contact theories that can be used to determine the tangential 
forces and spin moment between the wheel and the rail [Kalker, 
1990]. These theories are: Linear Theory, Strip Theory, 
Empirical Theory, Simplified Theory and Exact Three 
Dimensional Rolling Contact Theory. These theories assume 
that the contact between the two bodies is non-conformal. 
Recently, Li and Kalker [Li and Kalker 1998a, 1998b and Li, 
2002] introduced an approach for numerical solution of the 
conformal contact between the wheel and the rail. In this paper, 
Kalker’s wheel-rail contact theories are presented. The paper 
provides an overview for each theory and its restriction or error 
as was reported by Kalker. In addition, a systematic procedure 
for implementing Kalkers’s wheel-rail contact theories in 
multibody codes is briefly presented. 

INTRODUCTION 
In 1951, Joost J. Kalker entered Delft University of technology 
as a student of physics. Shortly after, he was transferred to 
applied mechanics to start his researches on contact mechanics, 
computers and programming. In 1958, Kalker graduated as 
mathematical engineer. During this period, De Pater introduced 
Kalker to wheel-rail contact problem. In 1967, Kalker was 
awarded his PhD degree. His PhD dissertation, “On the Rolling 
Contact of Two Elastic Bodies in the Presence of Dry 
Friction”, introduced Kalker’s creep forces linear theory 
[Kalker, 1967a]. In this theory, the contact patch is divided into 
an adhesion and sliding area and the effect of the spin moment 
is included. The theory is based on the assumption that the 
traction distribution is continuous at the leading edge of the 
contact. That is the traction must vanish at the leading edge 

where the particles enter the contact area. On the other hand 
within the contact area, the traction builds up until the trailing 
edge. In addition, Kalker introduced the table of creepage and 
spin coefficients that are known as Kalker’s coefficients 
[Kalker, 1967a]. Kalker’s coefficients are used in several 
wheel-rail contact theories to determine the tangential forces 
and spin moment. To this day, the linear theory is commonly 
used to investigate railroad vehicle dynamics.  

In 1964-1967, Kalker extended the original Strip 
Theory developed by [Haines and Ollerton, 1963] by 
employing the lateral and spin creepages in addition to the 
longitudinal creepage. In this theory, the area of contact is 
assumed to be elliptical with long lateral semi-axis. Kalker 
[Kalker, 1964b, 1964a, 1967a and 1972] proved that, for such 
contact area, the area of contact can be divided into slices 
parallel to the longitudinal axis of the contact area. In each 
slice, Carter theory [Carter, 1926] can be used to determine the 
tangential force. The strip theory was replaced by the 
Simplified Theory due to its limitation to slender contact area. 
Therefore, it will not be presented in this paper. 

In 1968, Kalker introduced the Empirical Theory 
[Kalker, 1968b]. This theory defines the relation between the 
longitudinal and lateral creepages and total creep force. 
Kalker’s empirical theory is more accurate compared to the 
empirical theory proposed by Johnson and Vermeulen in 1964 
[Johnson and Vermeulen, 1964]. 

During the period of 1973-1982, Kalker developed the 
Simplified Theory [Kalker 1973, 1981, and 1982]. The theory is 
based on approximating the relation between the tangential 
surface traction and the tangential surface displacement by 
using compliant (flexibility) parameters. These compliant 
parameters depend on the creepage and spin coefficients of the 
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linear theory. This theory is used in well known program 
FASTSIM that was developed by Kalker in 1982 [Kalker, 
1982]. FASTSIM is widely used in computer programs to 
determine the wheel-rail creep contact forces.  

In 1986, Kalker generalized the principal of virtual 
work for solving the contact problem [Kalker, 1986b and 
1986c]. The use of the principle of virtual work led to the Exact 
Three-Dimensional Rolling Contact Theory. In this theory, the 
solution of the contact problem is determined by maximizing 
the complementary work over all possible functions that satisfy 
the constraints. In addition, the displacements of the surface in 
the contact area are expressed as integrals of the surface 
tractions by using influence functions [Kalker, 1990]. The 
influence functions can be determined analytically for the 
homogenous, isotropic half-space. Therefore, half-space 
assumption is used in this theory. The exact three dimensional 
rolling contact theory is used in the well known program 
CONTACT developed by Kalker. 

To this end, the methods described in the preceding 
paragraphs assume that the contact area is non-conformal, and 
the half-space approximation is utilized. In the case of 
conformal contact, the half-space approximation is no longer 
valid as the size of the contact area is not small compared to the 
size of the contacting bodies. In addition, the creepages and 
spin are not constant within the contact area. Li and Kalker 
used two quasi-quarter spaces for solving the conformal contact 
problem [Li and Kalker 1998a, 1998b and Li, 2002]. In their 
approach, the variation of spin throughout the contact area is 
considered. 
 This paper is organized as follows: in section 2, the wheel-
rail contact problem is briefly introduced. The mathematical 
representations of the wheel-rail rolling contact problem and 
the definitions and terminologies that will be used in this paper 
are presented in this section. In section 3, the linear theory is 
presented. The limitations of the linear theory are discussed in 
this section. In section 4, the empirical theory that can be used 
for special cases is presented. In section 5, the simplified theory 
is introduced. The presentation of the simplified theory, in this 
section, is used to briefly describe the algorithm of the 
FASTSIM program. In section 6, the exact three dimensional 
rolling contact theory is discussed. The method of virtual work 
that is used to drive this theory is presented in this section. In 
section 7, the conformal contact problem is briefly described. 
The Li-Kalker theory for conformal contact is presented in this 
section. In section 8, a systematic approach for implementing 
Kalker’s wheel-rail contact theories in multibody codes is 
described. The procedure uses non-generalized surface 
parameters to represent the wheel and the rail surfaces 
[Shabana, et al, 2008]. Some results that are obtained from a 
multibody code are presented in this paper. Finally, summary 
and discussions of the Kalker’s wheel-rail contact theories are 
provided in section 9. 
 

WHEEL-RAIL ROLLING CONTACT PROBLEM 
Due to the elasticity of the wheel and the rail and the externally 
applied load, some points on the surfaces in the contact region 
may slip while others may stick when the two bodies move 
relative to each other. The difference between the tangential 
strains of the bodies in the adhesion area leads to small 
apparent slip (creepage). Creepages generate tangential creep 
forces and spin moment. In the case of wheel-rail contact, 
tangential forces and spin moment are generated, since the 
motion of the wheel relative to the rail is a combination of 
rolling and sliding. 

In case of a wheel rolling on a rail, the rail coordinate 
system is defined by the fixed Cartesian coordinate 
system r r rX Y Z , as shown in Fig. 1. If the wheel rolls over the 
rail in the direction of positive rX  with a rolling velocity 
vector of the wheel center , the magnitude of the rolling 
velocity is defined as 

v
V = v . In addition, a coordinate 

system, X Y Z , which moves with the contact point can be used 
so that rX X Vt= − , where t  is the time. In the point of 
contact, the wheel has a circumferential velocity c , relative to 
the wheel center, that is almost opposite to the rolling velocity 

 in the point of contact. Therefore, a rigid slip can be defined 
as the sum of these velocities as follows: 
v

= +s v c&              (1) 
Clearly, the rigid slip is defined in the tangential plane and 
represents the effect of the velocity in this plane and the 
rotation about the Z-axis as follows [Kalker, 1979b and 1980]: 

( ) ( )x yV y xξ ϕ ξ ϕ⎡ ⎤= + = − + +⎣ ⎦s v c i j&       (2) 

where  and i j  are the unit vectors along X  and directions, 
respectively, 

Y
xξ  and yξ  are the longitudinal and lateral 

creepage, respectively, and ϕ  is the spin creepage. The 
longitudinal, lateral and spin creepages are defined as follows 
[Kalker, 1980]: 
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            (3) 

where α  is the angle between the wheel plane and the plane Y 
= 0 and R and γ  are the wheel rolling radius and the wheel 
conicity, respectively, as shown in Fig. 2. 

 
Figure 1. Wheel rolling over a rail. 
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Due to the elasticity of the wheel and the rail and the 

externally applied load, the two bodies will deform and touch 
along an elliptical contact area according to Hertz’s theory 
[Hertz, 1882]. In this case, the normal pressure exerted on the 
wheel and the rail is defined as follows: 

( ) ( )23( , ) 1
2

Np x y x a y b
abπ

= − − 2          (4) 

where a and b are the contact area semi-axes and N is the 
normal applied force. 

Y

Z

Y

Z

 
Figure 2. Direction of velocity. 

   
The displacement of a particle of the wheel is different 

than the displacement of a particle of the rail due the local 
deformations of the wheel and the rail in the area of contact. 
This difference is given by 

w r= −u u u              (5) 
where  and  are the surface displacement of the wheel 
and the rail in the tangential plane (X,Y), respectively. The true 
slip can be defined as the sum of the rigid slip given by Eq. 2 
and the time derivative of the relative displacement of the 
material given by Eq. 5 as follows [Kalker, 1979b and 1980]: 

wu ru

( ) ( ) ( ) (
( , ) ( , , )

/ /x y

x y x y t

V y x V xξ ϕ ξ ϕ

= +

⎡ ⎤= − + + − ∂ ∂ + ∂ ∂⎣ ⎦

w s u

i j u u

&& &

)t           (6) 

In case of steady state rolling, ( .  )/ 0t∂ ∂ =u
The preceding tangential slip defined on the contact 

plane can be used to define the tangential traction  using 
Coulomb’s law as 

tF
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; 0 (slip ar
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       (7) 

where µ  is the friction coefficient and  is the contact 
pressure and 

p

txF  and tyF are the longitudinal and lateral creep 
forces per unit area, respectively. Therefore, the total 
longitudinal, lateral creep forces and spin creep moment can be 
expressed as follows: 

   

( )

x tx

y ty

ty tx

F F dx dy

F F dx dy

M xF yF dx dyϕ

⎫=
⎪
⎪

= ⎬
⎪
⎪= −
⎭

∫∫
∫∫
∫∫

            (8) 

The creep forces and the spin moment depend on the 
creepages, the contact ellipse dimension, and the normal force. 
The relationship between the longitudinal, lateral and spin 
creepages and the longitudinal and lateral forces and spin 
moments are governed by the creep-force law [Kalker, 1977a, 
1977b, 1979b, 1980, 1986a and 1990]. Kalker’s creep-forces 
theories are discussed in the following sections. 
 
LINEAR THEORY 
During the period of 1957-1972, Kalker developed the Linear 
Theory. The linear theory was based on the work originated by 
De Pater in 1956 [Kalker, 1979b and 1980 and Kalker and De 
Pater, 1971]. The linear theory assumes that the true slip, Eq. 6, 
vanishes. That is ( , ) 0x y =w& . This assumption is based on the 
effect of the applied pressure is ignored at the edges of the 
contact area. The linear theory uses the well known Kalker 
coefficients and , to determine the relation 
between the creepages and the creep forces and moment. Then, 
the creep forces and spin moment can be expressed in the 
matrix form as follows [Kalker, 1967a]: 

11 23 22, ,C C C 33C

11

22 23

23 33

0 0

0

0

x x

y y

z

CF
F Gab C abC
M abC abC

ξ
ξ
ϕ
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⎢ ⎥

⎤
⎢ ⎥ ⎢= − ⎢ ⎥

⎥
⎢ ⎥ ⎢

⎢ ⎥
⎥

⎢ ⎥ ⎢− ⎥⎣ ⎦ ⎣⎣ ⎦ ⎦

      (13) 

In 1956, De Pater assumed that for the case of circular contact 
area ( a b= ) and a Poisson ratio 0ν = , the  can be 
determined analytically. In 1957, Kalker relaxed the 
assumption of the circular contact area (

11C

a b≠ ) and determined 
all coefficients. In 1958, Kalker determined all coefficients in 
case a b≠  and 0ν ≠ [Kalker, 1958, 1964a, 1966, 1967a , 
1968a, 1969 and 1970]. Using the line contact theory, Kalker 
extend the calculation of the coefficient for the case where 

0a b →  or  0b a → [Kalker, 1972]. 
 The derivation of the linear theory depends on the 
steady state assumption. Therefore,  Eq. 6 can be expressed as 
follows: 

( ) ( ) ( )( , ) ( , , ) x yx y x y t V y x Vξ ϕ ξ ϕ⎡ ⎤ x= + = − + + − ∂⎣ ⎦w s u i j u&& & ∂

                                                                                (14) 
or 

( )
( )

x x x

y y y

w V y u x

w V x u x

ξ ϕ

ξ ϕ

= − − ∂ ∂ ⎫⎪
⎬

= + − ∂ ∂ ⎪⎭
       (15) 

To determine the creep forces and moment given by Eq. 8, the 
following conditions are assumed [Kalker, 1967a]: 

1. The stresses and displacement vanish at infinity, 
2. The contact area is elliptical and the normal pressure 

inside the contact area is given by 

( ) ( )2 23( , ) 1
2

Np x y x a y b
abπ

= − −   
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3. The tangential tractions vanish outside the contact 
area, 

4. The true slip vanishes in the region of adhesion in the 
contact area. That is , therefore, 0x yw w= =

( )
( )

x x

y y

u x y

u x x

ξ ϕ

ξ ϕ

∂ ∂ = − ⎫⎪
⎬

∂ ∂ = + ⎪⎭
 

5. Integrating the preceding equation w.r.t. x , one gets 

1( )x xu x yx D yξ ϕ= + + , and 2
2

1 ( )
2y yu x x Dξ ϕ= + + y  

where  and  are arbitrary functions in 
y. These functions are determined by assuming the 
traction distribution is continuous at the leading edge 
of the contact as shown in Fig. 3. That is the traction 
must vanish at the leading edge where the particles 
enter the contact area. Within the contact area, the 
traction builds up until the trailing edge as shown in 
Fig. 3. 

1( )D y 2 ( )D y

 
Figure 3.  Traction distribution within the contact area for 

Kalker’s linear theory. 
 
 Kalker determined the values of the 
coefficients ,  and  as functions of the ratio of the 
contact ellipse semi-axes and Poisson’s ratio [Kalker, 1967a 
and 1990]. It is important to mention that, the linear theory is 
valid if the material properties of the two bodies are the same. 
However, Kalker [Kalker, 1990] proposed the following 
expressions for the combined material properties of the two 
bodies: 

11 22,C C 23C 33C

( ) ( ) ( )11 1 1
2

w rG G G⎡= +⎣ ⎤⎦ ,          (16) 

( ) ( ) (1
2

w w r rG Gν ν ν⎡ ⎤= +⎣ ⎦)G           (17) 

where  and are the modulus of rigidity of the wheel and 
the rail, respectively, and 

wG rG
wν  and rν  are the Poisson’s ratio of 

the wheel and the rail respectively.  
 To this end, the main drawback of the linear theory is 
its limitation to handle large spin and large creepages. In 
addition, the condition t pµ≤F  is violated at the trailing edge 
where the wheel and rail particles leave the contact area. 
 
EMPIRICAL THEORY 
In 1968, Kalker introduced the empirical theory [Kalker, 
1968b]. This theory defines the relation between the 

longitudinal and lateral creepages and total creep force. The 
theory states that the total creep force is given as follows: 

1 1 2 2

2

( ) ( ) 1,
1,

f f
N

τ τ τ
τµ

+ ≤⎧
= ⎨ ≥⎩

e eF
e

         (18) 

and 
2 2τ ξ η= +   

3xabG Nξ π ξ µ φ= , 3yabG Nη π ξ µ ψ=  

1
1

3( ) cos
2

f τ τ τ−= , 2 2
2

1( ) 1 1 1
2

f τ τ τ⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 

( )1 ξ η τ= +e i j , ( ) 2 2
2 x y x yξ ξ ξ ξ= + +e i j  

( )B D Cφ ν= − − , ( )2B a b Cψ ν= −   if a b≤  

( ) ( )D D C b aφ ν= − −⎡ ⎤⎣ ⎦ ,  if a b  ( )( )/D C b aψ ν= − ≥

( )
2 1

2 2 2

0

cos 1 sinB g
π

dθ θ θ
−

= −∫  

( )
2 1

2 2 2

0

sin 1 sinD g
π

dθ θ θ
−

= −∫  

( )
2 3

2 2 2 2

0

cos sin 1 sinC g
π

dθ θ θ
−

= −∫ θ  

( )21g a b= −  

where is the total creep force vector,  and  are the unit 
vectors along the longitudinal and lateral directions, 
respectively,  

F 1e 2e

φ  and ψ are the normalized longitudinal and 
lateral coefficients that depend on the ratio of the contact 
ellipse semi-axes a b , Poisson’s ratio and the elliptic integrals 
B, D and C , and N is the normal applied force. The values of  
φ  and ψ  were calculated by Kalker and given as tabulated 
data in [Kalker, 1968b]. Kalker’s empirical theory is more 
accurate compared to the empirical theory proposed by Johnson 
and Vermeulen [Johnson and Vermeulen, 1964] that states 

     ( )3
11 1

N
τ

µ
⎡ ⎤= − −⎣ ⎦

F e            (19) 

Figure 4 shows the function 1 2f f+  as representation 
of Kalker’s empirical theory. Figure 4 shows the difference 
between Kalker’s empirical theory and Johnson and Vermeulen 
empirical theory. Experimental showed that Kalker’s empirical 
theory agreed well if 0.4τ ≤ . If 0.4τ > , Kalker’s empirical 
theory predicts higher total force compared to the actual 
measured values. On the other hand, Johnson and Vermeulen 
empirical theory predicts higher total values for all τ .In 
addition, Kalker proposed the creep coefficients instead of 
using the two coefficients φ  and ψ  as follows: 

( )114 3 xGabC Nξ πµ ξ= , and ( )224 3 yGabC Nη πµ ξ=      (20) 
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 In general, the empirical theory can be used for all 
values of elastic constants of the two bodies. In case of two 
bodies with different material, Eqs. 16 and 17 can be used. 

 
Figure 4. Kalker’s empirical theory vs. Johnson and Vermeulen 

empirical theory. 
 
SIMPLIFIED THEORY (FASTSIM PROGRAM) 
The simplified method assumed that the traction- displacement 
constitutive law takes a simple form which is given by [Kalker, 
1973]: 

[w r T
x tx y tyL F L F= − =u u u ]          (21) 

where xL  and  are the compliant parameters in the 
longitudinal and lateral directions, respectively. These 
compliant coefficients depend on the material, geometric 
parameters of the two bodies in the contact region and 
longitudinal, lateral and spin creepages. Therefore, substituting 
Eq. 21 in Eq. 14 and approximating the compliant parameters, 
one gets, 

yL

       
1 3

x x txw Fy
V L L x

ξ ϕ ∂
= − −

∂
 and 

2 3

y y tw Fy
V L L x

yξ ϕ ∂
= − −

∂
        (22) 

If the contact area is assumed to be elliptical with a and b semi-
axes along x and y, respectively, then the x- coordinate at the 
leading edge is given by 

( )2
1 1x a y b= ± −            (23)    

For steady state rolling, integrating Eqs. 22 w.r.t. x, one gets, 
 

( ) 1/ (tx x x )F x y L Dξ ϕ= − + y  
 
     and    ( )2

20.5 / ( )ty y yF x x L Dξ ϕ= − + y                (24) 
 
where 1( )D y  and 2 ( )D y  are arbitrary functions in y. These 
functions are determined by assuming the traction distribution 
is continuous at the leading edge of the contact. In this case, 
assuming that the traction has at the leading 
edge, therefore, . 

T
tx tyF F⎡ ⎤ =⎣ ⎦ 0

1 2( ) ( ) 0D y D y= =

The longitudinal and lateral creep forces and the 
compliant parameters can be determined by carrying the 

integration over the area as given in Eq. 9 and compare the 
results with the linear theory as follows: 

1

1

2

11
1

8
3

xb

x tx x x
b x

a bF dy F dx abGC
L

ξ ξ
− −

= = − = −∫ ∫           (25) 

( )

1

1

2 3

2

3

22 23

8
3 4

xb

y ty y
b x

y

a b a bF dy F dx
L

abGC ab GC

3L
π ϕξ

ξ ϕ

− −

= = − −

= − −

∫ ∫
                  (26) 

where  is the material modulus of rigidity and and 
 are Kalker’s coefficients. Therefore, the complaint 

parameters are given as follows: 

G 11 22,C C

23C

1
11

8
3

aL
C G

= , 2
22

8
3

aL
C G

= , and 3
234

a a b
L

C G
π

=       (27) 

 To solve Eqs. 25 and 26 numerically, Kalker proposed 
transferring the shape of the contact area to circular shape with 
radius equal to unity. This transformation is given as follows: 
 
x x a′ = , y y b′ = , 0tx txF F pµ′ = , 0ty tyF F pµ′ = , 

0p p p′ = , 0p N abN ′=           (28) 
and 1 0x xn a L pξ µ= , 2 0y yn a L pξ µ= , 3 0xf ab L pϕ µ= , 

2
3 0yf a L pϕ µ=                              (29) 

 
and x x x txw n y f F x′ ′ ′ ′= − − ∂ ∂ y y x tyw n y f F x′ ′ ′ ′= + − ∂ ∂,     (30) 
Therefore, the total forces can be determined as follows: 

( ) ( ) ( )
0

1, , , , , ,
c

x y tx ty x y
A

F F N F F p dx dy F F N
ab p

µ
µ

′ ′ ′ ′ ′ ′ ′ ′= =∫∫  (31) 

where 
             x x xT F N F Nµ′ ′= = , y y yT F N F Nµ′ ′= =        (32) 

and cA is area of the new circular contact  
 FASTSIM Program To this end, the creep forces 
presented in Eq., 31 are determined numerically in the program 
FASTSIM developed by Kalker [Kalker, 1982]. In this 
program, the area of contact is divided into slices along the y-
axis and parallel to the x-axis. The slice is dived into equal 
section with width h. The width h is determined by 1/10 of the 
length of each slice as shown in Fig. 5. Using simplest 
integration, the tractions txF ′  and tyF ′  are multiplied by hk 

where k is the number of the slice. The total creep forces  
and are determined by summing the integrated tractions and 
divide this summation by 2

xT

yT
π [Kalker, 1982]. In addition, for 

some cases, there will be a point inside the contact area where 
the rigid slip vanishes. This is known as the spin point and is 
defined by 

       ( ),y y x xn f n f− = 0            (33) 
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As the largest changes in the stress field occur near the spin 
point, the program doubles the number of slice parallel to the x-
axis around this point. 

 
Figure 5.  Contact area as defined by the simplified theory. 

 
 The simplified theory is widely used in railroad. It can 
be used if the contact area is elliptic. In this case, an error of 
15% can be expected [Kalker, 1990].  

In reality, the wheel and the rail are contaminated. In 
this case, due to the difference in the layers, the coefficient of 
friction may be reduced. This leads to variation in the 
saturation level of the creep forces.  To account for these layers, 
one can assume additional displacement  to the elastic 
displacement given by Eq. 21 [Kalker 1973 and 1979b]. 
Therefore, the total displacement is given by 

cu

T c= +u u u           (34) 
Similarly, the traction-displacement constitutive law 

for the additional displacement due to the additional layer is 
given by  

[ ]Tc cx tx cy tyL F L F=u            (35) 
and the total compliant parameters in the longitudinal and 
lateral directions are given by 

Tx cx xL L L= + , and           (36) Ty cy y
Therefore, the simplified theory can be used to investigate the 
influence of the surface layers that cover the bodies.  However, 
due to the additional layers on the surface of the bodies, the 
initial slope of the creep force law decreases. The simplified 
theory with the effect of contamination was verified 
experimentally [Kalker, 1979b]. The experimental results 
showed that high accuracy of the calculation of the creep forces 
is not required and hence one can use the traction-displacement 
relation given by Eq. 21 in designing railroad vehicle. 

L L L= +

 
EXACT THREE DIMENSIONAL ROLLING CONTACT 
THEORY 
In 1986, Kalker generalized the principal of virtual work for 
solving the contact problem [Kalker, 1986b and 1986c]. The 
use of the principle of virtual work led to the Exact Three-
Dimensional Rolling Contact Theory.  

If two bodies come into contact they will locally 
deform due to the externally applied load and the elasticity of 
the two bodies as shown in Fig 6. At a common point of 
contact, a particle 1P  on the first body (body 1) and a particle 

2P  on the second body (body 2) will displace due to the 
deformation by  and , respectively. At this configuration, 
if the two particles have the undeformed location with a fixed 
coordinate system and , respectively, as shown in Fig. 6, 
therefore, the locations of these points with respect to a fixed 
frame are given by 

1u 2u

1x 2x

1 1 1= +r x u 2 2 2= +u, r x            (37) 
The vertical deformation of the two body is defined by h, the 
maximum vertical deformation is defined by q as shown in Fig. 
6. At contact, the normals to the two bodies at points 1P  and 

2P  are parallel. Therefore, the deformed distance is given by 

( )1 2n ne h u u= − −           (38) 

where  and  are the component of  and  along the 
common normal, respectively. In the contact area the deformed 
distance is equal to zero (e = 0).  

1nu 1nu 1u 2u

 
Figure 6.  Two bodies in contact. 

 
 If the rolling is defined as a function of the time steps, 
the rigid displacement (rigid shift) for each time step can be 
defined as follows: 

                   (39) 
t t

t

V dtτ

+∆

= ∫W s&

where  is the rigid slip defined by Eq. 2.  s&
 To this end, for a potential contact area CA , as shown 
in Fig. 7, the contact area C has the boundary condition given 
by Eq. 7 and zero deformed distance (e = 0). This can be 
expressed for the contact region C in the form of the 
maximization of the virtual complementary work as follows 
[Kalker, 1990]: 

,
1 1min
2 2

C C

u p z t
A A

C h u pdS τ τ τ
⎛ ⎞ ⎛ ⎞′= + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ W u u F dS      (40) 

where (`) indicates the previous time step and 
T

x yu uτ ⎡ ⎤= ⎣ ⎦u . 
In addition, the displacement at in the direction i due to 
surface traction 

x
tjF  at y in the direction j is given by the 

linear elasticity as follows: 

( ) ( ) ( )
C

ai aij atj
A

u A F= −∫∫x y x y dS , a = body 1, 2 and 

, , ,i j x y z=                   (41) 
and for contact problem, Eq. 41 is reduced to 
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( ) ( )u A F dS= ∫∫x y y   
C

i ij tj
A

         (42) 

where ( )aijA −y x

1 2

is the influence function of body a and 

ij ij ijA A= he combined influence function and can be 
alytically for half-space assumption using 

Bossinesq-Cerruti solution [Kalker, 1990].  

A+ is t
determined an

 
Figure 7. Potential contact area for exact three dimensiona

 
To this end, Eqs. 40 and 42 are used to determine the 

contact 

l 
rolling contact theory. 

area. Kalker proposed a discretization technique to 
solve these equations. In this procedure, the area of contact is 
discretized into equal rectangles with MX rows and MY column 
in x and y directions, respectively. Therefore, Eq. 40 is given by 

( )* 1min C F A F h p W u
2jPJ t Ii IiJj t Jj J Jz J J t Jτ τ τ⎣ ⎦′⎡ ⎤= + + − F         (43) 

sub 0,Jz tj jzp pµ≥ ≤F , 
, , , , , 1,...,i j x y z= ,I J N=

 The exact three dimensional rolling contact theory is 
pleme

ONFORMAL CONTACT THEORY (LI-KALKER 

of conformal contact, the two bodies will be in 

 ,N MX MY=  

im nted in the well know program CONTACT. The 
implementation of this theory is described in [Kalker, 1990]. In 
this implementation, Eq. 43 is used to define the contact area. 
Clearly, the computational requirements for applying the exact 
three dimensional rolling contact theory are very high. 
Therefore, this theory is not commonly used in multibody 
codes. 
 
C
THEORY) 
In the case 
contact along a certain length. In this case, the dimensions of 
the contact area are not small compared to the dimensions of 
the two bodies. Therefore, the assumptions of concentrated 
load, half-space and constant creepage within the contact area 
are no longer valid. In 1998, Li and Kalker extended the exact 
three dimensional rolling contact theory to the case of 
conformal contact [Li and Kalker, 1998a and 1998b, and Li, 
2002]. Therefore, analytical solutions for the influence numbers 
are not valid.  They used quasi-quarter space to decompose the 
wheel and the rail. For each body a quasi-quarter space with 
concentrated and distributed load is used plus the body with 
concentrated load. A Finite Element Method (FEM) is used to 
determine the influence numbers as functions of unit traction.  

 To this end the problem is solved into two stages, the 
normal stage and the tangential stage. In the normal stage, the 
following equations are solved 

1IzJz Jz I IzJ jA p h A F dS eτ τ+ + =

dS

      (45) 

cos sinIz J Iy Jp dS N Fδ δ= −       (46) 
and 

1 30 and 0Ie p= >  if element I is inside the contact area 

1 0 and 3Ie > p  if element I is outside the contact area 
where Ie  is the deformed distance and Jδ is the contact angle 
at point J. 

In the tangential stage, the following equations are 
solved: 

I J J I I I Jz Jz I It ItA F dS A p dSτ α α τ τ τ′+ + − = −W u D F F       (47) 

Ix xF dS F=∑         (48) 

  cos sinIy I y Iz IF dS F p dSδ δ= +        (49) 
and 

1 0 and t Ig= <D F  for element I in the adhesion area 

1 0 and t Ig>D F =  for element I in the slip area 
where I zg pµ=  
 The two stages are solved numerically. Li [Li, 2002] 
provided detail description of the iterative procedure that can 
be used to solve these equations. Similar to the exact three-
dimensional rolling contact theory, Li-Kalker theory for 
conformal contact requires extensive computational procedure. 
In addition it requires a development of quasi-quarter spaces of 
the wheel and the rail to determine the influence numbers by 
using FEM. 
 
IMPLEMENTATION OF KALKER’S WHEEL-RAIL 
CONTACT THEORIES IN MULTIBODY CODES 
Kalker’s wheel-rail contact theories presented in the preceding 
sections can be used to determine the creep forces and spin 
moment between the wheel and the rail. However, these 
theories require the knowledge of the location of the contact 
point, creepages, contact ellipse semi-axes and normal applied 
load. For multibody codes, these can be determined by 
following a systematic procedure. In general, the wheel-rail 
contact problem is solved in three stages. In the first stage, 
Geometry Stage, the locations of the contact points between the 
wheel and the rail are determined. In the second stage, 
Kinematic Stage, the creepages are determined for each contact 
point. In the last stage, Dynamic Stage, the normal applied 
force, creep forces and spin moment are determined for each 
contact point. 

To this end, there are two approaches to solve the 
wheel/rail contact. These approaches are the Constraint and the 
Elastic approaches. In the constraint approach, the wheel-rail 
contact is determined by solving a set of nonlinear kinematic 
constraint equations. The normal force is determined by 
Lagrange multipliers. In the elastic approach the wheel is 
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allowed to penetrate inside the rail. This penetration is used to 
simulate the actual elastic deformations of the wheel and the 
rail in the contact zone. The location of the maximum 
penetration is determined by two methods. In the first method, 
Nodal Search approach [Zaazaa, 2003], the nodal points that 
define the wheel and the rail profiles are used to determine the 
locations of the contact point and hence the maximum 
penetration. In the second method, Algebraic Equations, a set 
of non-linear algebraic equations is used to determine the 
contact location. In both methods, the maximum penetration 
between the wheel and the rail in the area of contact is used to 
determine the normal force by using the Hertzian contact 
theory or a compliant force model. In this paper, the elastic 
approach is presented as an example of a systematic procedure 
to solve the wheel-rail contact in multibody codes. This 
procedure can be summarized as follows [Shabana et al., 
2008]: 

1. Determine the location of the point of contact between 
the wheel and the rail by using a complete 
parameterization of the surfaces.  

2. For the algebraic equations approach, solve a set of 
algebraic equations that enables the wheel to move 
vertically with respect to the rail to determine the 
location of maximum penetration between the wheel 
and the rail. 

3. Use the value of maximum penetration to determine 
the normal force by using Hertzian contact theory or a 
complaint force model. 

4. Knowing the location of the maximum penetration 
between the wheel and the rail, the relative velocity 
between the wheel and the rail at this point is 
determined. 

5. Knowing the normal force and the relative velocities, 
the creep forces and spin moment are determined. 

The above procedure is described in brief in the following 
sections. 

Parameterization of the Surface A surface can be 
described by using a set of independent surface parameters. In 
general, two surface parameters are enough to describe a 
surface. Therefore, if two bodies in contact, the required set of 
surface parameters can be written as follows: 

[ Tjjii ssss 2121=s ]           (50) 
where superscripts i and j denotes body i and body j, 
respectively as shown in Fig. 8. Using these parameters, the 
location of the contact point P can be defined in the body 
coordinate systems as a function of these surface parameters as 
follows:  
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u          (51) 

Using the definition of the contact locations, the tangents to the 
surface at the contact point are defined in the body coordinate 
system as 

k
n

k
Pk

n s∂
∂

=
u

t , n = 1, 2 and k = i,j          (52) 

The normal vector is defined as the cross product of the two 
tangents      

kkk
21 ttn ×=  , k = i,j                (53) 

 
Figure 8. Two Surfaces in Contact. 

 
Using the above parameterization the wheel and the rail surface 
can be described as follows: 

Wheel Surface As the wheel surface is a surface of 
revolute, the wheel surface parameters are that defines the 

independent lateral variable for the wheel profile and that 
defines the angular rotation of the wheel profile as shown in 
Fig. 9 

ws1
ws2

Rail Surface As the rail surface is a surface of 
extrusion, the rail surface parameters are that defines the arc 

length along the rail and  that defines the independent lateral 
variable that defines the rail profile function as shown in Fig. 9. 

rs1
rs2

In order to determine the location of contact point 
using the elastic contact approach, one may define the 
following four algebraic equations [Shabana et al, 2005 and 
2008]: 

1

2

1

2

0

0

0

0

r wr

r wr

w r

w r

⎫⋅ =
⎪

⋅ = ⎪
⎬

⋅ = ⎪
⎪⋅ = ⎭

t r

t r

t n

t n

          (54) 

where and  (k = w, r) are, respectively, the tangents to the 
wheel and rail surfaces at the potential contact point, 

1
kt 2

kt

wr w r=r r - r is the vector between two points that can come 
into contact, and  is the normal to the rail surface. These 
nonlinear algebraic equations can be solved for the surface 
parameters that define potential non-conformal contact points. 
To this end, a Newton-Raphson algorithm is employed. This 

rn
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requires evaluating the Jacobian matrix of the algebraic 
equations and iteratively solving the following system for each 
contact in order to determine Newton differences associated 
with the surface parameters: 

1 1
1 1 1 2 1 1 1 2

1 2

2 2
2 1 2 2 2 1 2 1

1 2

1 1
1 1

1 2 1 21

2 2
2 2

1 2 1 21

r r
r w r w wr r r wr r r

r r

r r
r w r w wr r r wr r r

r r

rw w r r
r r w w

w w r r

rw w r r
r r w w

w w r r

s s

s s

s s s s

s s s s

⎡ ∂ ∂
⋅ ⋅ − ⋅ − ⋅⎢ ∂ ∂⎢

∂ ∂
⋅ ⋅ − ⋅ − ⋅

∂ ∂

∂ ∂ ∂ ∂
⋅ ⋅ ⋅ ⋅

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
⋅ ⋅ ⋅ ⋅
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                    (55) 
Convergence is achieved when the norm of the 

violation of the algebraic equations or the norm of the Newton 
differences is less than a specified tolerance. It is important to 
mention that Eq. 55 requires the derivatives of the tangents and 
normal vectors with respect to the surface parameters. That is 
the second derivative of the potential contact location with 
respect to the surface parameters. Therefore, the surface of the 
wheel and the rail should be continuous up to the second 
derivatives with respect to the surface parameters. 

 
Figure 9.  Wheel and Rail Surface Parameters. 

Calculations of the Contact Normal Force Knowing 
the vector of the surface parameters from Eq. 54, the 
penetration can be calculated as follows:  

wr rδ = ⋅r n                                 (56) 
The wheel will penetrate in the rail if the penetration is 
negative. The normal contact forces can be calculated using 
Hertz's contact theory as follows: 

δδδ &CKFFF hdh −−=+= 5.1       (57) 

where δ  is the indentation, Fh is the Hertzian (elastic) contact 
force, Fd is the damping force, Kh is the Hertzian constant that 
depends on the surface curvatures and the elastic properties, 
and C is a damping constant. The velocity of indentation is 
evaluated as the dot product of the relative velocity vector 
between the contact points on the wheel and rail and the normal 
vector to the surface at the contact point. The reason for 

including the factor 

δ&

δ  in the damping force is to guarantee 
that the contact force is zero when the indentation is zero. To 
this end, the contact ellipse semi-axes can be determined by 
using Hertz theory and differential geometry [Shabana et al, 
2008] 

Calculations of Longitudinal, Lateral and Spin 
Creepages In the multibody system formulations, the global 
velocity of an arbitrary point on an arbitrary rigid body  can 
be defined as follows: 

i

i i i= + ×r R ω u&& i

⎤
⎦

            (58) 
where the vector is the global velocity vector of the origin 
of the body coordinate system,  is the local position vector 
of the arbitrary point on body i defined in the global frame, and 

 is the absolute angular velocity vector of the body 
coordinate system defined in the global coordinate system. This 
angular velocity vector is given as 

iR&
iu

iω

Ti i i i
x y zω ω ω⎡= ⎣ω           (59) 

If a wheel  is in contact with a rail r at point P whose global 
position is defined using the coordinates of the two bodies by 
the two vectors 

w

w
Pr  and r

Pr , respectively, the global velocity 
vector of the contact point can be defined in terms of the 
coordinates of the two bodies as follows: 

w w w w
P P
r r r r
P P

⎫= + × ⎪
⎬

= + × ⎪⎭

r R ω u

r R ω u

&&

&&
          (60) 

The velocities of Eq. 58 and the tangent Eq. 52 can be used to 
define the creepages in terms of the generalized coordinates 
and velocities of the two bodies as follows: 

1 2( ) ( ) ( ), ,
w r r w r r w r r
P P P P

x yV V
ζ ζ ϕ

− ⋅ − ⋅
V
− ⋅

= = =
r r t r r t ω ω n& & & &

   (61) 

where V is the forward velocity of the wheel. These definitions 
of the creepage are the general expressions used in the 
nonlinear analysis of multibody railroad vehicle systems. 
 Use of Kalker’s Contact Theories To this end, the 
creep-forces and spin can be determined by using Kalker’s 
wheel-rail contact theories. It is important to mention that as it 
was presented in the previous section, the creep forces 
determined by Kalker’s contact theories are defined in the 
contact frame that is defined by ,  and  as shown in 
Fig. 10 . The generalized forces and moments can be 
determined by using this frame. 

r
1t r

2t rn

 
Figure 10. Two bodies on rolling contact. 
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Numerical Example The procedure described in this 

section has been implemented in a multibody code called 
SAMS/Rail. SAMS/Rail is owned by the Federal Railroad 
Administration (FRA), Office of Research and Development, 
USA. SAMS/Rail has been developed by University of Illinois 
at Chicago (UIC). In this example, a single suspended 
wheelset, as shown in Fig. 11, is used. The wheelset mass and 
mass moments of inertia are given in Table 1. The wheel profile 
is assumed to be a standard 1:40 taper passenger wheel, and the 
rail profile is taken as 140 lb AREA type rail. Previously, this 
system was investigated by [Valtorta et al. 2001]. It was shown 
that the critical speed for hunting of this system is 69 m/s. 
Following a similar procedure, the track is assumed to be 
tangent. The right rail has one lateral alignment deviation, 0.3 
(in) amplitude and 39 (ft) wave length. This alignment 
deviation is used to excite the motion of the wheelset. The 
forward velocity of the wheelset and the frame was assumed to 
be 65 m/s (below the critical speed). Figure 11 shows the lateral 
displacement of the wheelset. Figures 12 and 13 show the 
predicted creepage and the dimension contact area semi-axes 
that are used to determine the creep forces. Figure 14 shows the 
vertical force of the right wheel. This force represents the 
summation of vertical normal contact force determined by 
Hertz theory and the vertical component of the tangential creep 
force determined by Klaker’s USETAB program. Figure 15 
shows the lateral and longitudinal forces applied on the right 
wheel. 
 
SUMMARY AND CONCLUSIONS 
In this paper, Kalker’s wheel-rail contact theories are presented. 
Each theory has its limitation. The linear theory is limited to 
handle large spin and creepages. In addition, the condition 

t pµ≤F  is violated at the trailing edge where the wheel and 
rail particle leave the contact area. On the other hand, the 
empirical theory can be used for all values of elastic constants 
of the two bodies. However, experimental showed that, 
Kalker’s empirical theory agreed well if the dimensionless total 
creep parameter 0.4τ ≤ . If 0.4τ > , Kalker’s empirical theory 
predicts higher total force compared to the actual measured 
values. The simplified theory is widely use for determining the 
creep forces. In general, the simplified theory can lead to an 
error of 15%. The computational requirements for applying the 
exact three dimensional rolling contact theory are high. 
Therefore, this theory is not commonly used in multibody 
codes. It is generally used for examining the effect of rail 
irregularities and noise. Similar to the exact three-dimensional 
rolling contact theory, Li-Kalker theory for conformal contact 
requires extensive computational procedure. In addition it 
requires a development of quasi-quarter spaces of the wheel 
and the rail to determine the influence numbers by using FEM. 
 A systematic procedure that can be used to implement 
Kalker’s wheel-rail contact theories is presented. The 
procedure uses non-generalized surface parameters to represent 

the wheel and the rail surfaces. In this procedure, the wheel is 
allowed to penetrate in the rail. This penetration is used to 
determine the normal applied force by using Hertz’s theory. 
The contact area semi-axes can be determined by using 
differential geometry. To this end, Kalker’s wheel-rail contact 
theories can be used upon determine these parameters. The 
procedure is implemented in a multibody code and numerical 
results are presented to demonstrate the validity of this 
procedure. 

 
Figure  9   Top view of the suspended wheelset. 
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Figure 11. Lateral displacement of the wheelset. 
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Figure 12.  Longitudinal, lateral and spin creepage of the right 

wheel. 
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Table 1    Suspended Wheelset Model 

Variabl
e Description Value 

wm  Wheelset mass 1568 kg 
w

xxI  Inertia moment 656 kg·m2

w
yyI  Inertia moment 168 kg·m2

w
zzI  Inertia moment 656 kg·m2

W Applied vertical load per Wheel  49000 N 

kx
Stiffness for longitudinal 
springs 

1.35E+5 N/m 

ky Stiffness for lateral springs 2.5E+5 N/m 

cx
Damping coefficient for 
longitudinal springs 

0 N/m·s 

cy
Damping coefficient for lateral 
springs 

0 N/m·s 

2b Distance between longitudinal 
springs 

1.8 m 

2a Gage distance 1435 mm 
µ  Wheel/rail friction  0.5 

E Wheel and rail Modulus of 
Elasticity 

2.1E+11 N/m2

ν  Poisson’s Ratio 0.28 
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Figure 13.  Contact area semi-axes, a and b, of the right wheel. 
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Figure 14.  Vertical contact force of the right wheel. 
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Figure 15.  Longitudinal and lateral forces of the right wheel. 
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