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Comparison of Three-
Dimensional Flexible Beam
Elements for Dynamic Analysis:
Classical Finite Element
Formulation and Absolute Nodal
Coordinate Formulation
Three formulations for a flexible spatial beam element for dynamic analysis are com-
pared: a Timoshenko beam with large displacements and rotations, a fully parametrized
element according to the absolute nodal coordinate formulation (ANCF), and an ANCF
element based on an elastic line approach. In the last formulation, the shear locking of
the antisymmetric bending mode is avoided by the application of either the two-field
Hellinger–Reissner or the three-field Hu–Washizu variational principle. The comparison
is made by means of linear static deflection and eigenfrequency analyses on stylized
problems. It is shown that the ANCF fully parametrized element yields too large torsional
and flexural rigidities, and shear locking effectively suppresses the antisymmetric bend-
ing mode. The presented ANCF formulation with the elastic line approach resolves most
of these problems. �DOI: 10.1115/1.4000320�
Introduction
Several finite element method �FEM� formulations for spatial

nite beam elements for use in multibody system dynamic pro-
rams can be found in literature. A common approach is using a
mall displacement formulation with respect to a reference frame
oving with the average overall motion of the beam �1,2�. In

rder to reduce the number of degrees of freedom, a limited num-
er of modes for the deformation are chosen �3�. The linear con-
ribution to the stiffness matrix due to nominal or actual stresses
an be included by adding a geometric stiffness matrix �4�.

A different way to describe the motion of the elements is by
sing nodal coordinates that describe the configuration of the el-
ments with respect to an inertial reference frame. This approach
s more in line with traditional nonlinear finite element formula-
ions used in statics. A convenient element formulation was devel-
ped by Van der Werff and Jonker �5�, implemented in the pro-
ram SPACAR �6� and further extended thereafter �7–9�. This
ormulation defines a number of generalized deformations for
ach element that are invariant under proper Euclidean displace-
ents, so arbitrary rigid-body motions can exactly be described.
A description with independently interpolated displacements

nd rotations was given by Simo and Vu-Quoc �10�. Reduced
umerical integration was used to prevent shear and membrane
ocking. Extensions to higher-order interpolations and physical
onlinearities can easily be included.

More recently, another approach using nodal coordinates, the
bsolute nodal coordinate formulation �ANCF�, was proposed by
habana �11�. This finite element formulation describes the posi-

ion of a material point within the element by interpolations based
n the Cartesian absolute coordinates of the nodal points and on
radients of the positions with respect to material coordinates de-
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scribing a reference configuration. The use of gradients allows the
exact representation of the inertia parameters of the beam as a
rigid body and avoids redundancy of rotational parameters. At the
cost of an increased complexity of the stiffness, the resulting ele-
ment mass matrix is constant, which allows an efficient evaluation
of the accelerations �12�.

Poisson locking in the continuum mechanics formulation of the
ANCF, which results in an overestimate of the flexural rigidity,
and a poor description of the deflection of a cantilever beam were
noted in Ref. �13�. An elastic line model with a reduced shear
stiffness was introduced to improve the beam element. Two other
approaches to improve on the description of varying bending mo-
ments in the element were proposed in Ref. �14�. In the first, terms
were added to the displacement interpolation and in the second, an
elastic line model was used, which cannot describe torsion and
can be used to model cables. An elastic line model with con-
straints on the deformation of the cross section was developed in
Ref. �15�, which approximates classical beam models.

The purpose of the present paper, which elaborates on Ref.
�16�, is to make a comparison between the finite element formu-
lation for a two-noded spatial beam element as described in Ref.
�7� and several corresponding absolute nodal coordinate formula-
tions. In order to overcome the deficiencies of the continuum me-
chanics formulation �17� and the elastic line formulation �18�, a
modification of the latter is taken into the comparison that in-
cludes deformations of the beam cross section and uncouples the
shear deformation and antisymmetric bending by means of the
Hellinger–Reissner �19� or Hu–Washizu �20� variational principle.

All discussed beam elements can be used for multibody system
problems in which large rigid-body motions and small or large
elastic vibrations need to be modeled. The ANCF element was
especially developed for the large vibration problems. However, a
first requirement is that problems with small vibrations can be
accurately calculated. Therefore, for the comparison of the ele-
ment formulations with each other and analytic solutions, only
linearized eigenfrequencies and linearized static deflections for a

single beam are considered.
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The organization of the paper is as follows. After this introduc-
ion, a beam element based on the Timoshenko beam with large
isplacements and large rotations is described. Then the ANCF
lements with their modifications are described. Next, results on
he eigenfrequencies and deflections due to a static load for a
ingle beam element are presented and discussed. The article ends
ith conclusions.

Classical FEM Beam Element
The finite beam element in the multibody dynamics program

PACAR is a shear flexible beam based on the elastic line concept.
his supposes that the beam is slender and the cross section is
oubly symmetric. Large displacements and rotations are allowed,
ut the deformations must remain small. The presentation of the
lement mainly follows �7�.

The configuration of the element �Fig. 1� is determined by the
ositions and orientations of the two end nodes, by which it can
e coupled to and interact with other elements. The positions of
he end nodes p and q are given by their coordinates xp and xq in
global inertial system Oxyz. The change in orientation of a node
ith respect to the reference orientation is determined by an or-

hogonal rotation matrix R���, which can be parametrized by a
hoice of parameters, denoted by �, such as Euler angles, modi-
ed Euler angles, Rodrigues parameters, and Euler parameters.
e use Euler parameters with a constraint, but this choice is im-
aterial to the description of the properties of the element. For a

eam element, orthogonal triads of unit vectors �ex
p ,ey

p ,ez
p� and

ex
q ,ey

q ,ez
q� rigidly attached to the nodes p and q, respectively, are

efined.
The unit vector ex is perpendicular to the average warped cross-

ectional plane of the beam in the sense of Cowper �21�, and ey
nd ez are in the principal directions of the cross section. In the
bsence of shear deformations, ex is tangent to the elastic line of
he beam. The change in orientation of the triads is determined by
he rotation matrix as

e = R���e �1�

here e is a unit vector in the reference configuration.

2.1 Elastic Forces. The elastic forces are derived with the
lastic line concept. The element has 6 degrees of freedom as a
igid body, while the nodes have 12 degrees of freedom. Hence
he deformation that is determined by the end nodes of the ele-

ent can be described by six independent generalized strains,
hich are functions of the positions and orientations of the nodes

nd the geometric parameters of the element. With l=xq−xp and l
he length of the initial undeformed beam, we define the six gen-
ralized strains as

�1 = �lTl − l �elongation�

�2 = l�ez
pTey

q − ey
pTez

q�/2 �torsion�

�3 = − lTep, �4 = lTeq �bending in the xz-plane�

x
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Fig. 1 FEM beam
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�5 = lTey
p, �6 = − lTey

q �bending in the xy-plane� �2�
These generalized strains, which may be compared with what Ar-
gyris called natural modes �22�, are invariant under arbitrary rigid-
body motions, so they truly measure the amount of strain in the
element. If we group the positions and orientations of the nodes in
a vector x= �xp ,�p ,xq ,�q� and denote the vector of generalized
deformations by ε, then we can write for generalized strains �2�
symbolically

�i = Di�xk�, i = 1, . . . ,6, k = 1, . . . ,12 �3�

The energetically dual quantities of the generalized strains ε are
the generalized stresses �. The physical meaning of these stresses
is found by equating the internal virtual work of the elastic forces
�T�ε to the external virtual work fT�x of the nodal forces. Sub-
stitution of the virtual generalized strains derived from Eq. �3�
results in

�i��i = �iDi,k�xk = fk�xk, ∀ �xk �4�

with the virtual nodal displacements and rotations �xT

= ��xpT ,��pT ,�xqT ,��qT�, and a subscript after the comma to de-
note partial derivatives. From Eq. �4� we derive the force equilib-
rium conditions for the element as

fk = Di,k�i �5�
In the case of small deformations, the generalized stresses have a
clear physical meaning. As the deformed and undeformed geom-
etries are nearly the same, we consider the undeformed situation
in which the beam central axis coincides with the global x-axis.
For the rotational parameters � we choose the small rotations
about the three coordinate axes �x, �y, and �z. The Jacobian of the
generalized strains then takes the values

Di,k
0 =�

− 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 − l 0 0 0 0 0 l 0 0

0 0 1 0 − l 0 0 0 − 1 0 0 0

0 0 − 1 0 0 0 0 0 1 0 l 0

0 − 1 0 0 0 − l 0 1 0 0 0 0

0 1 0 0 0 0 0 − 1 0 0 0 l

�
�6�

The equilibrium nodal force system according to Eq. �5� is then
given by

fp = �− �1,�6 − �5,�3 − �4�, Mp = �− �2l,− �3l,− �5l�

fq = ��1,�5 − �6,�4 − �3�, Mq = ��2l,�4l,�6l� �7�

From this result we interpret that �1 is the normal force, �2l is the
torsion moment, and �3l, �4l, �5l, and �6l are the bending mo-
ments at the nodes p and q.

If for each beam element the strains remain small by dividing
the overall beam in sufficiently many elements, then the usual
linear stress-strain relation can be applied, which results for the
generalized stresses and strains in

�i = Sij� j, i, j = 1, . . . ,6 �8�

where the stiffness Sij =diag�S1 ,S2 ,S3 ,S4� is given by

S1 = EA/l, S2 = St/l3

S3 =
EIy

�1 + �z�l3�4 + �z − 2 + �z

symm. 4 + �z
	, �z =

12EIy

GAkzl
2

S4 =
EIz

�1 + �y�l3�4 + �y − 2 + �y

symm. 4 + �y
	, �y =

12EIz

GAkyl
2 �9�

Here, E is the modulus of elasticity �Young’s modulus�, G is the
shear modulus, A is the area of the cross section, St is the torsional

stiffness, Iy and Iz are the area moments of inertia of the cross
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ection with respect to the principal axes, and ky and kz are the
hear coefficients according to Cowper �21�. Note that the inclu-
ion of the shear deformation is done by a slightly modified stiff-
ess matrix �23�. This tying of the shear deformation to the bend-
ng by means of the statics of the beam prevents problems of shear
ocking.

Finally the element stiffness matrix is obtained by taking partial
erivatives of the nodal forces f with respect to the nodal coordi-
ates, resulting in a tangent stiffness matrix

K̄ij = Dk,iSklDl,j + Dk,ij�k �10�

hich consists of two parts. The last part is the geometric stiffness
atrix, which, evaluated in the undeformed and unstressed geom-

try, is identical to zero, and the first part is the linear stiffness
atrix

Kij = Dk,iSklDl,j �11�

2.2 Mass Matrix. The derivation of the consistent mass for-
ulation for the flexible spatial beam element is based on the

lastic line concept. To arrive at a Timoshenko beam the rotary
nertia of the cross section will be included by a separate interpo-
ation of the angular rates of the cross section along the elastic
ine.

The first part of the mass matrix is obtained by neglecting the
ontribution of the rotary inertia and only taking the mass distri-
ution along the elastic line into account. The interpolation for the
ositions on the elastic line for finite deformation is a third-order
olynomial

r��� = �1 − 3�2 + 2�3�xp + �� − 2�2 + �3�lex
p + �3�2 − 2�3�xq

+ �− �2 + �3�lex
q �12�

here �=x / l and x ,0�x� l is a material coordinate along the
eam axis, and where the principal directors ex

p and ex
q are trans-

ormed from their initial values according to Eq. �1�. The kinetic
nergy together with the mass matrix can be obtained from the
ntegral

T1 =
1

2
m


0

1

ṙTṙd� =
1

2
ẋTM1ẋ �13�

here m is the total mass of the beam. If the rotations at the nodes
re parametrized by �p and �q, this results in a mass matrix

M1 =
m

420�
156I 22lA 54I − 13lB

4l2ATA 13lAT − 3l2ATB

156I − 22lB

symm. 4l2BTB
� �14�

here

A = �ex
p/��p, B = �ex

q/��q �15�

he inertia forces can, in general, be written as the sum of mass
accelerations+convective terms

fin = − �M�x�ẍ + h�x, ẋ�� �16�

hese convective terms h, which are quadratic in the speeds, arise
nly for a nonconstant mass matrix and can be derived from the
ass matrix as

hi = � �Mij

�xk
−

1

2

�Mjk

�xi
	ẋjẋk �17�

learly the mass matrix M1 is not constant and the corresponding

onvective terms are

ournal of Computational and Nonlinear Dynamics

aded 21 Jan 2010 to 145.94.174.41. Redistribution subject to ASME
h1 =
m

420�
l�22Ȧ�̇p − 13Ḃ�̇q�

l2AT�4Ȧ�̇p − 3Ḃ�̇q�

l�13Ȧ�̇p − 22Ḃ�̇q�

l2BT�− 3Ȧ�̇p + 4Ḃ�̇q�
� �18�

where

Ȧ = ��A/��p��̇p, Ḃ = ��B/��q��̇q �19�
The second part of the mass matrix takes into account the rotary

inertia of the cross section. Interpolation of angular rates along the
elastic line is more convenient than interpolation of the orientation
of the cross section. The angular rates, expressed in a body-fixed
reference frame, are interpolated linearly as

���� = �1 − ���p + ��q �20�

where �p and �q are the angular rates at nodes p and q expressed
in a body-fixed reference frame. The mass matrix can be obtained
from the kinetic energy integral

T2 =
1

2

�=0

�=1

�TdJ� =
1

2
ẋTM2ẋ �21�

where dJ is the mass moment of inertia matrix along the body-
fixed axes of an infinitesimal small section of length ld�. The
body-fixed angular rates at the nodes expressed in terms of the
nodal rotational parameters �p and �q are

�p = P��p��̇p, �q = Q��q��̇q �22�

where the matrices P and Q have the same functional dependence
on the rotation parameters. For a constant cross section with a
sectional mass moment of inertia matrix dJ=mJd�, the second
part of the mass matrix, which takes into account the rotary inertia
of the cross section, is

M2 =
m

6�
0 0 0 0

2PTJ̄P 0 PTJ̄Q

0 0

symm. 2QTJ̄Q
� �23�

where the corresponding convective terms h2 can be derived from
this mass matrix by application of Eq. �17�. For slender beams the
rotary inertia contributions are usually small compared with the
regular inertia terms. If the principal dimension of the cross sec-
tion is h, then J is of the order h2 and the rotary inertia contribu-
tions are of the order �h / l�2 compared with the regular inertia
terms �14� and �18�. Therefore the linear interpolation in Eq. �20�
is sufficiently accurate.

3 ANCF Beam
In this section a spatial beam element with two nodes according

to the absolute nodal coordinate formulation will be presented. In
the first part we follow mainly the description by Yakoub and
Shabana �17� and Shabana and Yakoub �18�.

A distinguishing point in the ANCF is the use of slope vectors
to describe the orientation of the cross section in the nodes, where
the slope vectors are not necessarily unit vectors. This leaves more
room for the cross section to deform and change shape. It is ex-
pected �17,18� that this type of description, together with a three-
dimensional continuum mechanics approach, leads to more accu-
rate results. A well-known major advantage of this description is
that it leads to a constant mass matrix. Unfortunately, the expres-
sions for the elastic forces are more complex.

The configuration of the beam element �Fig. 2� is determined
by the position and slope vectors of the two end nodes p and q.

Each node is defined by one vector for the position r and three

JANUARY 2010, Vol. 5 / 011010-3
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ectors for the slopes rx, ry, and rz, where every vector is ex-
ressed in a global inertial system Oxyz. Thus the element has 24
odal coordinates given by the vector

e = �rpT,rx
pT,ry

pT,rz
pT,rqT,rx

qT,ry
qT,rz

qT�T �24�

he location of an arbitrary point r in the beam is determined by
he interpolation

r = S�x,y,z�e �25�

here S is the element shape function and e is the vector of nodal
oordinates. The shape function is obtained using polynomials
hat are in this case cubic in x and linear in y and z, where x is a

aterial coordinate along the beam axis and y and z are the two
ther perpendicular directions. The element shape function matrix
is now defined as

S = �S1I,S2I,S3I,S4I,S5I,S6I,S7I,S8I� �26�

here I is the 3�3 identity matrix and the polynomials

S1 = 1 − 3�2 + 2�3, S2 = l�� − 2�2 + �3�

S3 = l�1 − ��	, S4 = l�1 − ��


S5 = 3�2 − 2�3, S6 = l�− �2 + �3�

S7 = l�	, S8 = l�
 �27�
ith the nondimensional coordinates

� = x/l, 	 = y/l, 
 = z/l �28�

nd l the initial length of the beam. The initial undeformed con-
guration where the beam central axis coincides with the global
-axis is

r�0 = Se�0 �29�

ith the initial nodal coordinates e �0 as

e�0 = �0T,ex
T,ey

T,ez
T,lex

T,ex
T,ey

T,ez
T�T �30�

ith fixed triads �ex ,ey ,ez� of the global inertial system Oxyz.
ndeed, substitution of e �0 in Eq. �29� leads to the identities r �0
�x ,y ,z�T.

3.1 Elastic Forces, Fully Parametrized Element. The elastic
orces are derived from a general continuum mechanics approach.

e start from the displacements u of an arbitrary point of the
eam expressed in the global Oxyz coordinate system as given by

u = r − r�0 �31�

ubstitution of these displacements in the Green–Lagrange strain
ensor

�ij = 1
2 �ui,j + uj,i + uk,iuk,j�, i, j,k = x, . . . ,z �32�

here partial derivatives are denoted by ux,y =�ux /�y, etc., leads
o the strain tensor expressed in the absolute coordinates r and

x

y

z

O u

v

w

ux
p

vx
p

wx
p

rx
p

ry
p

rz
p

r p rx
q

ry
q

rz
q

r q

Fig. 2 ANCF beam
heir derivatives as
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�ij =
1

2
�rk,irk,j − �ij� =

1

2�r,x
T r,x − 1 r,x

T r,y r,x
T r,z

r,y
T r,y − 1 r,y

T r,z

symm. r,z
Tr,z − 1

�
�33�

From this we identify six independent strain components, which
we write in the form of a strain vector � such that the vector dot
product 1

2�T� represents the elastic energy. The components of
the strain vector are now

�1 = 1
2 �r,x

T r,x − 1�, �4 = r,x
T r,y

�2 = 1
2 �r,y

T r,y − 1�, �5 = r,y
T r,z

�3 = 1
2 �r,z

Tr,z − 1�, �6 = r,z
Tr,x �34�

and the energetically dual stress vector components are the three
normal stresses �1, �2, and �3, and the three shear stresses �4, �5,
and �6. The virtual work of the elastic stresses now can be written
as

�W =

V

�T��dV �35�

Under the assumption of a Saint-Venant–Kirchhoff material
model, a homogeneous isotropic elastic material, the stress vector
� is related to the strain vector as

� = E� �36�

where the nonzero elastic coefficients E are given by

Eij =
2G

�1 − 2���1 − � � �

� 1 − � �

� � 1 − �
�, i, j = 1, . . . ,3

Ekk = G, k = 4, . . . ,6 �37�

Here, G is the shear modulus and � is Poisson’s ratio. Equating
the virtual work of the elastic stresses with the virtual work of the
external nodal forces Q as in



V

�T��dV = QT�e �38�

yields the elastic nodal forces expressed in terms of the nodal
displacements

Q =

V

���/�e�TE�dV �39�

The tangent stiffness matrix is obtained by linearizing the elastic
forces with respect to the nodal displacements

K =

V

���/�e�TE���/�e�dV +

V

��2�/�e2�TE�dV �40�

The second matrix is the geometric stiffness matrix, which, evalu-
ated in the undeformed and unstressed geometry, is identical to
zero, whereas the first matrix is the linear stiffness matrix

K =

V

���/�e�TE���/�e�dV �41�

Finally, we will evaluate the linear stiffness matrix in the unde-
formed configuration. With the notion that the slopes in the ini-
tially undeformed configuration are identical to the global direc-
tions

r,x�0 = ex, r,y�0 = ey, r,z�0 = ez �42�
and
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� �r,x

�e
�

0

= S,x, � �r,y

�e
�

0

= S,y, � �r,z

�e
�

0

= S,z �43�

he partial derivatives of the strain vector evaluated at this initial
ndeformed configuration become

� ��

�e
�

0

=�
S1,x

S2,y

S3,z

S1,y + S2,x

S2,z + S3,y

S3,x + S1,z

� �44�

here Si,j stands for the ith row of S,j. Substitution into Eq. �41�
nd evaluating the integral over the volume of the beam lead to
he desired linear stiffness matrix

K0 =

V

���/�e��0
TE���/�e��0dV �45�

3.2 Mass Matrix. The absolute nodal coordinate formulation
eads to inertia forces that can be expressed as minus the product
f a constant mass matrix times the accelerations of the nodal
oordinates. There are no inertia forces that are quadratic in the
elocities. The constant mass matrix is defined as

M =

V

STSdV �46�

he above integral defines a mass matrix that only depends on the
ass distribution and the dimensions of the beam and, under the

ssumption of a consistent shape function, captures all linear and
otary inertia effects.

3.3 Elastic Forces, Elastic Line Approach. The fully param-
trized beam element of Sec. 3.1 suffers from shear locking for
ntisymmetric bending, as will be shown in Sec. 4. As an alterna-
ive, we propose to develop an element in which the elastic line
oncept is used, along lines as in Ref. �18�. For the interpolation
f points of the beam we will still use the same cubic form in the
ongitudinal direction and linear form in the transverse direction
s in the fully parametrized element �25� and �26�, but all defor-
ations �extension, shear, torsion, and bending� will be evaluated

n the elastic line.
First we define the slopes on the elastic line as

rx = r,x�x,0,0�, ry = r,y�x,0,0�, rz = r,z�x,0,0� �47�

ith these slopes we define nine generalized deformations

�x = 1
2 �rx

Trx − 1�, �y = 1
2 �ry

Try − 1�, �z = 1
2 �rz

Trz − 1�

�yz = ry
Trz �xy = rx

Try, �xz = rx
Trz

�x = 1
2 �rz

Try� − ry
Trz��, �y = − rz

Trx�, �z = ry
Trx� �48�

here a prime denotes a derivative with respect to x. The first six
eformations are the usual Green–Lagrange strains: the first four,
x, �y, and �z, and �yz, represent the extension of the beam and the
eformation of the cross section, and �xy and �xz are the trans-
erse shear deformations. For small strains, �x represents the tor-
ion, and �y and �z the bending deformations. Definitions of the
ending deformations better in agreement with Timoshenko’s
eam theory are �y =rx

Trz� and �z=−rx
Try�, but these are not used,

ecause they would lead to constant curvature for small deforma-
ions, instead of a linear variation for the definition in Eq. �48�,
nd prevent antisymmetric bending altogether.
The strain energy of the beam can be written as the sum of four
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distinct parts, as in We=Wl+Wt+Wb+Ws. The individual strain
energies are for extension and coupled deformation of the cross
section

Wl =
1

2
l


0

1

�A�̄iEij�̄ j�d�, i, j = 1, . . . ,4 �49�

with the strains �̄i= ��x ,�y ,�z ,�yz� and the elasticity coefficients
Eij as in Eq. �37�; for torsion and bending

Wt =
1

2
l


0

1

�St�x
2�d�, Wb =

1

2
l


0

1

�EIy�y
2 + EIz�z

2�d� �50�

and for the transverse shear deformation

Ws =
1

2
l


0

1

�GAky�xy
2 + GAkz�xz

2 �d� �51�

The elastic forces are determined, in the same manner as in Sec.
3.1, from equating the variation of the elastic energy to the virtual
work of the nodal forces

�We = ��We/�e��e = QeT�e �52�

Then the linear stiffness matrix is found by linearizing the elastic
forces with respect to the nodal coordinates at the undeformed
reference configuration

K = ��Qe/�e��0 �53�

Because the elastic energy is a direct sum of contributions due to
extension, torsion, bending, and shear, the same holds for the stiff-
ness matrix. The individual contributions to the stiffness matrix
are as follows: For the extension

Kl = l

0

1

��̄i,e��0
TEij��̄ j,e��0Ad�, i, j = 1, . . . ,4 �54�

for the torsion

Kt = l

0

1

St��x,e��0
T��x,e��0d� �55�

for the bending

Kb = l

0

1

EIy��y,e��0
T��y,e��0d� + l


0

1

EIz��z,e��0
T��z,e��0d�

�56�

and for the shear deformation

Ks = l

0

1

GAky��xy,e��0
T��xy,e��0d� + l


0

1

GAkz��xz,e��0
T��xz,e��0d�

�57�

resulting in a total linear stiffness matrix

K = Kl + Kt + Kb + Ks �58�

The partial derivatives of the generalized strains with respect to
the nodal coordinates in the initially undeformed configuration
take on even simpler forms as in Eqs. �42� and �44� since the only
variable is now the elastic line coordinate x.

With the cubic/linear interpolation on the elastic line according
to Eqs. �26� and �47�, adding the contribution of the shear defor-
mation according to Eq. �51� will result in shear locking for anti-
symmetric bending, as will be shown in Sec. 4. Therefore we
propose to add the transverse shear stiffness by means of a varia-
tional principle in which we are free to define not only the posi-
tion field but also the deformation field or the stress distribution.

3.3.1 Hellinger–Reissner approach. In the Hellinger–Reissner

�19� variational approach we are free to define both the position
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Downlo
eld and the stress distribution. The strain field is related to the
tress field by the constitutive relation. This can be advantageous
f the stress distribution, usually from an engineering point of
iew, is known beforehand. The general form of this principle is

�

V

��Tε�r� − Wc����dV − Q�r = 0 �59�

here ε�r� is the strain as calculated from the position field and

c��� is the complementary elastic energy density, while Q con-
ains all external forces and inertia forces.

To resolve the shear locking problem we consider the case of
ure shear deformation. We assume that the shear forces will vary
inearly over the elastic line of the element. The strain energy of
he shear deformation is the sum of the shear in the y- and the
-direction. For the shear forces in the z-direction we assume a
inear shear stress distribution according to

�xz = N�z
� �60�

ith the shape function

N = �1 − �,�� �61�
nd the shear stresses at the nodes

�z
� = ��xz

p ,�xz
q �T �62�

he Hellinger–Reissner shear strain functional is now

Wsz
� =


V

��xz
T �xz − Wc��xz��dV �63�

here Wc is the complementary shear stress energy according to

Wc��xz� =
1

2Gkz
�xz

2 �64�

ith shear factor kz to account for the fact that the shear stress is
ot uniformly distributed over the cross section �21�. Substitution
f the linear shear stress distribution from Eq. �60� results in the
hear strain functional

Wsz
� =


V

��z
�TNT�xz −

1

2Gkz
�z

�TNTN�z
�	dV �65�

ith the shear strain distribution �xz according to Eq. �48�. For
his shear strain functional we seek a stationary value with respect
o the generalized shear stress parameters ��, resulting in

�Wsz
� =


V

��z
�T�NT�xz −

1

Gkz
NTN�z

�	dV = 0 �66�

ntegration over the volume yields

Wxz −
Al

Gkz
H�z

� = 0 �67�

ith the shear strain terms

Wxz�e� = Al

0

1

�NT�xz�e��d� �68�

hich are in general nonlinear functions in the nodal coordinates
, and the constant coefficient matrix

H = �1/3 1/6
1/6 1/3 	 �69�

rom this we can solve for the generalized shear stress parameters

�z
� = SzWxz, Sz =

Gkz

Al
H−1 =

Gkz

Al
� 4 − 2

− 2 4
	 �70�

ubstitution in the original shear energy function yields the shear

nergy according to the Hellinger–Reissner principle
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Wsz
� = 1

2Wxz
T SzWxz �71�

The shear strain energy for shear forces in the y-direction Wsy
� can

be derived in the same manner resulting in a total shear strain
energy function of

Ws
� = 1

2Wxy
T SyWxy + 1

2Wxz
T SzWxz �72�

The strain energy for the beam with the adapted shear stiffness
according to the Hellinger–Reissner principle now becomes

We� = Wl + Ws
� + Wt + Wb �73�

The shear stiffness matrix according to the Hellinger–Reissner
principle, which replaces Eq. �57�, is found in the same manner as
in Eq. �53� resulting in

Ks
� = �Wxy,e��0

TSy�Wxy,e��0 + �Wxz,e��0
TSz�Wxz,e��0 �74�

3.3.2 Hu–Washizu Approach. The shear locking problem can
be resolved even more when one has a greater freedom in choos-
ing the various interpolations. In the Hu–Washizu variational ap-
proach �24� we are free to define not only the position field r and
the stress field � but also the strain field ε. The general form of
this principle is

�

V

�W�ε� + �T�ε�r� − ε��dV − Q�r = 0 �75�

where ε�r� is the strain as calculated from the position field and
W�ε� is the elastic potential energy density, while Q contains all
external forces and inertia forces. The variation has to be taken for
the stress field, the strain field, and the position field. The weak
solution is found for arbitrary admissible variations of the stress
field ��, strain field �ε, and position field �r. When one takes the
strain field in accordance with the stress field one regains the
Hellinger–Reissner principle.

For the shear deformation in the z-direction, we have �=�xz,
ε=�xz, and r is as in Eq. �25�. In the case of pure shear deforma-
tion we assume that the shear strain will vary linearly over the
elastic line of the element

�xz = N�z
� �76�

with the shape function N from Eq. �61� and the shear strains at
the nodes

�z
� = ��xz

p ,�xz
q �T �77�

The elastic shear strain energy is

Wsz =
1

2

V

Gkz�xz
2 dV �78�

Take for the stress field two Dirac functions, one at each end of
the beam, which means that the kinematic conditions are only

enforced at both ends. With the Dirac or impulse function �̂��� the
stress field then becomes

�xz = I�z
� �79�

with the impulse shape function

I = ��̂�0�, �̂�1�� �80�

and the shear stresses at the nodes

�z
� = ��xz

p ,�xz
q �T �81�

For the strain ε�r� as calculated from the position field we use the
expression for the shear strain on the elastic line rx

Trz from Eq.
�48�. Then, variation of the stresses gives the kinematic condi-

tions, namely, that the shear strains at the nodes are determined by
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�z
� = ��rx

Trz���=0,�rx
Trz���=1� �82�

ext, variation of the shear strains gives the constitutive behavior,
hich, after integration over the volume, results in

�z
� = GAkzlH�z

� �83�

he variation of the position field, which in this case finally comes
own to the variation of the nodal coordinates e, results in the
lement equilibrium equations

Q = � ��z
�

�e
	T

�z
� �84�

ubstitutions of Eq. �82� in Eq. �83� and of Eq. �83� in Eq. �84�
ive the nodal elastic shear forces Qsz

e in terms of the nodal coor-
inates. The linear shear stiffness matrix, which replaces Eq. �57�,
s found in the same manner as in Eq. �53�, resulting for the shear
n the z-direction in

Ksz
�� = �GAkzl� ��z

�

�e
	�

0

T�H� ��z
�

�e
	�

0

�85�

he contribution of the shear in the y-direction to the linear shear
tiffness matrix is found in the same manner as above.

Results and Discussion
To investigate the performance of the three different element

ypes, classical FEM, ANCF fully parametrized, and ANCF with
n elastic line approach and a Hellinger–Reissner or a Hu–
ashizu variational method, a number of tests on linear problems

ave been performed. The first is a static loading on a cantilevered
eam. Since the ultimate goal for these elements is the use in a
ultibody dynamics environment, an eigenfrequency analysis on
beam with various boundary conditions has been performed as a

econd test. Moreover, the eigenfrequency analysis yields
oordinate-free results and therefore makes a comparison easy and
bjective.

The beam is modeled by one finite element and has an unde-
ormed length l and a uniform square cross section of width and
eight h=0.02l. The material is isotropic and linearly elastic with
odulus of elasticity E, Poisson’s ratio �, and volumetric mass

ensity . The solutions depend on Poisson’s ratio, and throughout
value of �=0.3 is used. The shear factors for a square cross

ection are ky =kz=10�1+�� / �12+11�� �21�. The torsional stiff-
ess is given by St=GkxIp, with G=E / �2�1+���, the shear distri-
ution factor kx=0.8436 �25�, and the polar area moment of inertia
p= Iy + Iz. The beam is initially aligned along the x-axis with the
rincipal axes of the cross section along the y-axis and z-axis.

For the static test a cantilevered beam loaded at the tip by a
ending moment My and a transverse force Fz is considered. The
oundary conditions for the classical FEM element are straight-
orward: All three displacements and three rotations at node p are
uppressed. For the ANCF elements the three displacements of
ode p are suppressed together with all three displacements of the
wo cross-sectional slope vectors ry and rz in node p. This is as if
he cross section is welded on all sides to the support. The gener-
lized applied forces Qe for the ANCF element associated with
he nodal coordinates e due to the applied bending moment My
nd transverse forces Fz can be found by a virtual work approach.
t is assumed that stress distributions �x�y ,z� and �xz�y ,z� in the
ross section are such that the only nonzero static result is a mo-
ent about the y-axis as in My =z�xdA and a transverse force
z=�xzdA. For instance, a linear normal stress �x=c1z and a
onstant shear stress �xz=c2 will do. Then the virtual work of
hese stresses in the cross section must be equal to the virtual

ork of the applied generalized force Qe as in
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�W =
 ��rx�x + �rz�xz�dA = Qe
T�e �86�

where the virtual displacements in the cross section �r
= ��rx ,�ry ,�rz� are interpolated according to Eq. �25�. This results
in an external generalized force in node q as

Qe
q = �0,0,Fz,0,0,0,0,0,0,My,0,0� �87�

Clearly, the rotation of the cross section about the y-axis is deter-
mined by the x-displacement of the slope vector rz.

The transverse tip displacement w and the rotations at the tip
about the y-axis of the cross section �csy and of the elastic line
�ely resulting from the static tests are presented in Tables 1 and 2.
Note that the two rotations differ due to transverse shear deforma-
tion. For the classical FEM element they are defined as �csy =�y
and �ely =−�w /�x and for the ANCF element as �csy = �rz�x and
�ely =−�rx�z. The classical FEM element yields the exact solution
for both loading cases. The ANCF fully parametrized element
shows, for the moment loading Table 1, in all results an offset by
a Poisson factor �= �1−2���1+�� / �1−��. This is so, because the
anticlastic deformation of the cross section cannot be described by
the continuum position field. This Poisson factor is also present in
the results for the transverse force loading, Table 2, but here the
leading term in the displacement is also off by a factor of 3

4 , which
is due to the shear locking. The effect of transverse shear is
present but off by a factor kz since the transverse shear stress
distribution is not taken into account with the ANCF fully param-
etrized element approach. The elastic line approach together with
a Hellinger–Reissner variational method gives some improvement
in that the Poisson factor is gone but the element still suffers from
a poor prediction of the deflection. This is due to the weak inclu-
sion of the connection between the deflection of the center line
and the shear deformation at the clamped end, and some addi-
tional transverse shear, O�h / l�2, which is present in all solutions.
Application of the Hu–Washizu variational principle yields better

Table 1 Dimensionless transverse tip displacement w̄, cross-
sectional rotation �̄csy, and elastic line rotation �̄ely for a canti-
levered beam of length l loaded by a moment My at the tip for
four different element types: classical FEM, ANCF fully param-
etrized, ANCF with a Hellinger–Reissner variational method,
and ANCF with a Hu–Washizu variational method. Displace-
ments are nondimensionalized by Myl2 / „EIy… and rotations by
Myl / „EIy…. The shear factor �z=12EIy / „GAkzl2… and a common
factor 	= „1−2
…„1+
… / „1−
… are used.

Method w̄ �̄csy �̄ely

Classical FEM − 1
2 1 1

ANCF-fp − 1
2� � �

ANCF-HR − 1
2 − 1

2�z 1+�z 1+ 1
2�z

ANCF-HW − 1
2 − 1

2�z 1+�z 1+ 1
2�z

Table 2 Dimensionless transverse tip displacement w̄, cross-
sectional rotation �̄csy, and elastic line rotation �̄ely as in Table
1 but now for loading by a transverse force Fz. Displacements
are nondimensionalized by Fzl3 / „EIy… and rotations by
Fzl2 / „EIy….

Method w̄ �̄csy �̄ely

Classical FEM 1
3 + 1

12�z − 1
2 − 1

2 − 1
12�z

ANCF-fp 1
4�+ 1

12kz�z − 1
2� − 1

2�− 1
12kz�z

ANCF-HR 1
4 + 1

3�z − 1
2 − 1

2�z − 1
2 − 1

3�z

ANCF-HW 1
3 + 1

3�z − 1
2 − 1

2�z − 1
2 − 1

3�z
JANUARY 2010, Vol. 5 / 011010-7
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esults. The leading term in the transverse displacement at the tip
or a transverse force loading is now correct, because the shear
eformations at the nodes are used to calculate the contribution in
he stiffness matrix due to shear. The transverse shear correction
hows an offset by a factor of 4. For the constant moment loading
he solution still suffers form spurious transverse shear deforma-
ion.

The dynamic tests are eigenfrequency analyses on a beam mod-
led by one element with various boundary conditions. The first
ase is a fully free beam, which is somewhat idealized but has a
umber of advantages: There are no kinematic boundary condi-
ions and it demonstrates the possibility of the element to describe
he six rigid-body motions. The nonzero dimensionless eigenfre-
uencies for the various elements are presented in Table 3 to-
ether with the analytic solution for an Euler–Bernoulli beam. The
ero eigenvalues are not reported since all element types describe
he rigid-body modes exactly. Owing to the symmetric cross sec-
ion some frequencies come in pairs. The first observation that we

ake is that the ANCF elements yield 12 further eigenfrequen-
ies, of which 2 are longitudinal modes and 10 are cross-sectional
odes with a high frequency. These cross-sectional modes are

epicted in Fig. 3, where the aspect ratio of the cross section
ersus the beam length is exaggerated for a better illustration of
he modes. The first bending mode in the ANCF fully param-
trized is too high by a factor ��1−�� / �1+�� / �1−2���1.16,
hich is expected because the anticlastic deformation of the cross

ection cannot be described by the continuum position field. Note
hat this result is also present in the dynamic response of the

idpoint deflection of the pendulum beam from Fig. 8 in Ref.
17�. The torsional eigenfrequency is also too high, because the
actor kx is not included. The ANCF fully parametrized element
ives a large value for the second bending mode, because this
ode is coupled to a transverse shearing deformation, a phenom-

non that is referred to as shear locking. The modified ANCF with
he elastic line approach gives a far more realistic value. This
econd bending mode for all ANCF elements is illustrated in Fig.
. The shear locking is evident in the fully parametrized element.
he elastic line approach with the Hellinger–Reissner method
ields a correct eigenfrequency but incorrect rotations of the cross
ection at the nodes. The Hu–Washizu method yields not only a
orrect eigenfrequency but also correct rotations of the cross sec-
ion at the nodes. Note that the rotations between the nodes along
he elastic line are incorrect. All ANCF elements give identical
nd good approximations for the longitudinal eigenfrequencies,
ecause the interpolation is cubic instead of linear, as for the

Table 3 Dimensionless eigenfrequencies �=
free beam modeled by one element for four di
parametrized, ANCF elastic line approach wit
ANCF elastic line approach with a Hu–Washiz
solution for an Euler–Bernoulli beam. The e
=�EI / „�Al 4

… for bending modes, �T=�G / „�l 2
…

dinal „Lg… and cross-sectional „Cs… modes.

Mode Analytic Classical FEM

B 1st�2� 22.3733 26.8060
B 2nd�2� 61.6728 90.0950
T 2.8855 3.1817
Lg 1st 3.1416 2.8697
Lg 2nd 6.2832 –
Lg 3rd 9.4248 –
Cs 1,2 – –
Cs 3,4 – –
Cs 5,6 – –
Cs 7,8 – –
Cs 9 – –
Cs 10 – –
lassical FEM element.
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The second boundary condition case is a simply supported
beam. The boundary conditions for the classical FEM beam are
straightforward. Both nodes are supported in the yz-plane and in
node p the horizontal displacement and the rotation along the
central axis are suppressed. This leaves six degrees of freedom,
namely,

uc = ��y
p,�z

p,uq,�x
q,�y

q,�z
p� �88�

where the displacements of a position vector rp are denoted by
�up ,vp ,wp�. For the ANCF element we apply the same boundary
conditions, where the rotation along the central axis in node p is

/�B,T,L for the free vibration of a completely
ent element types: classical FEM, ANCF fully
Hellinger–Reissner variational principle, and

ariational method together with the analytical
nfrequencies are nondimensionalized by �B

r torsion mode, and �L=�E / „�l 2
… for longitu-

ANCF-fp ANCF-HR ANCF-HW

31.0797 26.8060 26.8060
1270.38 91.6088 90.1501

3.4641 3.1817 3.1817
3.2201 3.2201 3.2201
7.7447 7.7446 7.7446

14.7666 14.7666 14.7666
107.489 99.081 99.114
107.600 99.114 100.684
151.911 151.911 151.911
151.926 151.911 151.911
240.221 240.221 240.221
240.245 240.236 240.236

1,2 Ω = 107.489

3,4 Ω = 107.6

5 Ω = 151.911

6 Ω = 151.911

7 Ω = 151.926

8 Ω = 151.926

9 Ω = 240.221

10 Ω = 240.245

Fig. 3 The ten cross-sectional eigenmodes together with their
dimensionless eigenfrequencies � for the free vibration of a
completely free beam modeled by one ANCF fully parametrized
�
ffer
h a
u v
ige

fo
element. See also Table 3.
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ow suppressed by fixing the y-displacement of the z-slope vec-
or: vz

p. Displacements of a slope vector rx
p are denoted by

ux
p ,vx

p ,wx
p�, etc. The remaining degrees of freedom, 18 in total,

re

uc = �ux
p,vx

p,wx
p,uy

p,vy
p,wy

p,uz
p,wz

p,uq,ux
q,vx

q,wx
q,uy

q,vy
q,wy

q,uz
q,vz

q,wz
q�

�89�
he results of this analysis are presented in Table 4. The ANCF

ully parametrized element shows the same drawbacks as in the
revious case. The Hellinger–Reissner approach resolves the
hear locking in the second bending mode but still yields incorrect
ross-sectional rotations at the nodes, as can be seen in Fig. 5. The
orsional and longitudinal eigenfrequencies show similar behavior
s in the free-free case. Also the cross-sectional modes are nearly
dentical in frequency, because the boundary conditions for the
imply supported beam put almost no restriction on the deforma-
ion of the cross section. This is not the case for a cantilevered
eam, the third type of boundary condition considered. Here the
ame boundary conditions are taken as in the static test, namely,
estricting all displacements of the built-in node and fixing the two
lope vectors ry

p and rz
p. The remaining degrees of freedom, 15 in

otal, are

uc = �ux
p,vx

p,wx
p,uq,vq,wq,ux

q,vx
q,wx

q,uy
q,vy

q,wy
q,uz

q,vz
q,wz

q� �90�
hese results are presented in Table 5 and Figs. 6 and 7. The

esults for the longitudinal and torsion eigenfrequencies are as in
he simply supported case. For bending, we see the same kind of
henomena as before, especially the shear locking in the second

fp, Ω = 1270.38

HR, Ω = 91.6088

HW, Ω = 90.1501

ig. 4 The second bending eigenmode together with the di-
ensionless eigenfrequency � for the free vibration of a com-

letely free beam modeled by one element for three ANCF ele-
ent types: fully parametrized, elastic line approach with a
ellinger–Reissner method and elastic line approach with a
u–Washizu method. See also Table 3.

Table 4 Dimensionless eigenfrequencies � a

Mode Analytic Classical FEM

B 1st�2� 9.8696 10.9526
B 2nd�2� 39.4784 49.9942
T 1.4427 1.5908
Lg 1st 1.5708 1.6408
Lg 2nd 4.7124 –
Lg 3rd 7.8540 –
Cs 1,2 – –
Cs 3,4 – –
Cs 5 – –
Cs 6 – –
Cs 7 – –
Cs 8 – –
Cs 9 – –
Cs 10 – –
ournal of Computational and Nonlinear Dynamics
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bending mode for the ANCF fully parametrized element; see Fig.
6. The ANCF element with Hellinger–Reissner method still gives
rather high values for the two bending eigenfrequencies. This can
be attributed to the difficulty in prescribing the condition of zero
rotation of the cross section for the clamped end. Because the
Hellinger–Reissner formulation relaxes the rigidity against shear
deformation, shear can still occur at the ends of the beam for
asymmetric bending; the shear is only small in an average sense.
The Hu–Washizu approach gives more realistic values and modes.
The cross-sectional modes are now fewer, seven instead of ten,
and their frequencies have shifted somewhat compared with those
from the simply supported case. This is due to the restriction of
the deformation of the cross section at the built-in node. This is
also the reason for the relatively low eigenfrequency of the first
�double� cross-sectional mode �Fig. 7� because the cross-sectional
deformation is now coupled to the global displacement.

5 Conclusions
In this paper some formulations for a flexible spatial beam have

been compared. In general, the classical FEM formulation gives
good results for the linearized case. Some shortcomings in the
spatial beam formulation given in Ref. �17� were found, especially
that it yields too large torsional and flexural rigidities and that
shear locking effectively suppresses the asymmetric bending
mode. An ANCF element with an elastic line approach, along
similar lines as in Ref. �18�, has been proposed. This formulation
yields better torsional and flexural rigidities. The shear locking of
the asymmetric bending mode can be avoided by the aid of the
Hellinger–Reissner variational principle. The problem of the

Table 3 but now for a simply supported beam

ANCF-fp ANCF-HR ANCF-HW

12.6988 10.9526 10.9526
696.14 50.1996 50.0248

1.7319 1.5907 1.5907
1.5724 1.5724 1.5724
5.0546 5.0546 5.0546

11.5848 11.5848 11.5848
107.417 99.015 99.031
107.510 99.031 99.361
107.433 107.424 107.424
151.911 151.911 151.911
151.915 151.911 151.911
151.926 151.911 151.911
240.196 240.194 240.194
240.238 240.231 240.231

fp, Ω = 696.143

HR, Ω = 50.1996

HW, Ω = 50.0248

Fig. 5 The second bending eigenmode together with the di-
mensionless eigenfrequency � as in Fig. 4 but now for a sim-
ply supported beam. See also Table 4.
s in
JANUARY 2010, Vol. 5 / 011010-9

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



p
a
t

A

A

S

R

F
m
t

F
w
f

0

Downlo
roper imposition of the boundary conditions at clamped ends is
lleviated by the judicious application of the Hu–Washizu varia-
ional principle.

As a direction of future research, it is desirable to develop the
NCF spatial beam based on the elastic line concept further.
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