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Abstract. In this paper a set of benchmark problems involving flexible beams embedded in a
multibody dynamics system are presented. The need for these benchmarks arises in the devel-
opment of correct and accurate models of flexible bodies undergoing large displacements and
large rotations. These can be used to test different formulations and implementations.

A set of relatively simple problems are defined which comprise linear static, non-linear static,
buckling and eigenfrequency analyses. The beams are either straight or initially curved. A
complete specification of the problems is given. Solution sobtained by two versions of a spatial
beam element and analytic solutions if available are presented as a reference.

1



A. L. Schwab and J. P. Meijaard

1 INTRODUCTION

Since the introduction of computer codes for the analysis of flexible multibody dynamics
systems, developers have been in need of testing the accuracy and restrictions of their codes
by means of benchmark problems. One of the most challenging tasks within these codes is the
correct and accurate modelling of spatial flexible bodies undergoing large displacements and
large rotations. Although much is already known from the finite element method (FEM) world,
these developments are often restricted to small displacement and small rotations, and were
primarily developed for static analysis.

With the numerous codes available today, there are almost as many different benchmark
problems as there are codes. One of the first flexible multibody dynamics benchmark problem
was probably the analysis of a planar flexible four bar mechanism by Bahgat and Willmert
(1976). Other well-known multibody dynamics problems are the dynamic analysis of a planar
crank–slider mechanism with elastic connecting rod by Chu and Pan (1975) and Song and Haug
(1980), the planar beam spin-up manoeuvre by Kane et al. (1987) which was part of a space
based robot manipulator, the planar beam spin-up by Wu and Haug (1988), the spatial flying
spaghetti by Simo and Vu-Quoc (1988), the spatial crank–slider mechanism with compliant
connecting rod by Yoo and Haug (1986), the planar falling pendulum by Yakoub and Shabana
(2001), and the spatial falling plate by Mikkola and Shabana (2003).

A first step in standardization of multibody dynamics benchmark problems was made by
Gonzalez et al. (2006). Although in their guidelines they mention the need for extending the
benchmark problems with good test cases, including flexible bodies, the paper only treats rigid
multibody dynamics systems. This paper is a first step in extending the benchmark problems
to flexible mutibody systems. Most of the existing benchmark problems in flexible multibody
dynamics, although stylized, suffer from complexity. That is, if the results are not identical it
is often hard to identify the underlying problem. Therefore we propose to introduce some basic
benchmark problems for which analytic solutions are mostly known.

Flexible bodies can often by approximated by plate- or beam-like structures, meaning that
one or two dimensions are small in comparison with the rest. Therefore, as a first start, we have
developed a set of benchmark problems which validate the behaviour of spatial flexible beams
within a multibody dynamics environment. Some earlier results are reported in Meijaard (1996)
and Schwab and Meijaard (2005).

2 BEAM BENCHMARK PROBLEMS

The spatial beam benchmark problems focus on the correct formulation of slender beam ele-
ments undergoing large displacements and large rotations, but restricted to small deformations.
Some attention is given to initially curved beams.

The benchmark problems start with simple static analyses in the small displacement regime
to validate the correct formulation of the elastic forces. Next, a number of static large displace-
ment and large rotation tests are performed on a straight and an initially curved beam. Then
a number of buckling tests, normal, lateral, and torsional, are performed to check the way in
which geometric stiffness due to pre-stress is taken into account. Then a number of eigen-
frequency analyses are preformed to validate the combination of elastic forces and distributed
inertia forces. These eigenfrequency tests are particularly useful because the results, eigenfre-
quencies and eigenmodes, are independent of the choice of coordinates. Finally, the effect of
tensile pre-stress on the eigenfrequencies is investigated. In all tests the convergence of the
results due to mesh refinement is investigated.
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The benchmark problems described above are demonstrated on two variants of a classical
Timoshenko beam with large displacement and large rotation formulation (Meijaard (1996)) as
implemented in the multibody dynamics program SPACAR (Jonker and Meijaard (1990)). This
finite beam element is a shear flexible beam based on the elastic line concept. This supposes
that the beam is slender and the cross-section is doubly symmetric. Large displacements and
rotations are allowed, but the deformations must remain small. The configuration of the element
is determined by the positions and orientations of the two end nodes, by which it can be coupled
to and interact with other elements. The positions of the end nodes p and q are given by their
coordinates xp and xq in a global inertial system Oxyz. The change in orientation of a node with
respect to the reference orientation is determined by an orthogonal rotation matrix R(ϑ), which
can be parametrized by a choice of parameters, denoted by ϑ, such as Euler angles, modified
Euler angles, Rodrigues parameters and Euler parameters. We use Euler parameters with a
constraint, but this choice is immaterial to the description of the properties of the element. For
a beam element, orthogonal triads of unit vectors (ep

x, e
p
y, e

p
z) and (eq

x, e
q
y, e

q
z) rigidly attached to

the nodes p and q respectively are defined. The unit vector ex is perpendicular to the average
warped cross-sectional plane of the beam in the sense of Cowper (1966), and ey and ez are in
the principal directions of the cross-section. In the absence of shear deformations, ex is tangent
to the elastic line of the beam. The change in orientation of the triads is determined by the
rotation matrix as e = R(ϑ)ē, where ē is a unit vector in the reference configuration.

The elastic forces are derived with the elastic line concept. The element has six degrees of
freedom as a rigid body, while the nodes have twelve degrees of freedom. Hence the deforma-
tion that is determined by the end nodes of the element can be described by six independent
generalized strains, which are functions of the positions and orientations of the nodes and the
geometric parameters of the element. Two variants of the element are available. In the first,
standard strain-displacement relations (continuity equations) are used, which is called BEAM.
In he second variant, BEAMNL, additional quadratic terms in the strain-displacement relation
are included to enhance the performance in the case of pre-stress. For the mass matrix a consis-
tent mass formulation is used based on the elastic line concept (Meijaard (1996)), where rotary
inertia of the cross-section can be lumped in the nodes.

The material used in the benchmark problems is isotropic and linearly elastic with modulus
of elasticity E = 210 · 109 N/m2, Poisson ratio ν = 0.3, shear modulus G = E/(2(1 + ν)), and
density ρ = 7850 kg/m3. The beam is initially aligned along the x-axis with the principal axes
of the cross-section along the y- and z-axis. In the spirit of Euler, finite rotations are presented
in the form of unit vector (ex, ey, ez) and angle of rotation φ about the axis along this unit vector.

2.1 Small displacements and small rotations, cantilever beam

The first static benchmark is a small displacement and small rotation analysis of a cantilever
beam loaded at the tip, see Figure 1. The beam has an undeformed length l = 1 m and the
dimensions of the rectangular cross-section are h = 0.02 m and w = 0.01 m. The loads at the
tip are a transverse force Fz = 1 ·10−4 N, a bending moment My = 1 ·10−4 Nm, and a torsional
moment Mx = 1 · 10−4 Nm. The torsional stiffness of the rectangular cross-section is taken as
St = Ghw3/3. The theoretical results for the small displacements and small rotations at the tip
are a tip displacement in the z-direction uz = Fzl

3/(3EIy) − Myl
2/(2EIy), a rotation of the

tip about the y-axis ϕy = Fzl
2/(2EIy)−Myl/(EIy), and a rotation of the tip about the x-axis

ϕx = Mxl/St, where the remaining displacements and rotations are zero.
The numerical solution modelled by one BEAM element gives results with at least 6 signifi-

cant digits compared to the theoretical solution.
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Figure 1: Cantilever beam.

2.2 Small displacements and small rotations, quarter circle beam

The second static benchmark is a small displacement and small rotation analysis of a can-
tilever quarter-circle beam loaded at the tip, see Figure 2. The undeformed radius of the quarter-
circle is R = 1 m and the cross-section is circular with a diameter d = 0.02 m. The loads at
the tip are a transverse force Fz = 1 · 10−4 N, and a moment Mx = 1 · 10−4 Nm. The torsional
stiffness of the cross-section is taken as St = (π/32)Gd4. The theoretical results for the small
displacements and small rotations at the tip are

uz =
FzR
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The initial curvature for the BEAM element is taken into account by adding an appropriate
initial undeformed strain to the generalized bending strain expressions. Results for the BEAM
element are shown in Table 1. The convergence rate is quadratic. Note that the circular arc
approximation leads to an overestimation of the stiffness in the z-direction.

Figure 2: Quarter-circle beam.

2.3 Large displacements and large rotations, cantilever beam

The third static benchmark is a large displacement and large rotation analysis of a cantilever
beam loaded at the tip, see Figure 1. The beam has an undeformed length l = 1 m and the
dimensions of the rectangular cross-section are h = 0.02 m and w = 0.005 m. The loads at
the tip are a bending moment My = 100 Nm, and a torsional moment Mx = 25 Nm. The
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Table 1: Dimensionless tip displacement, ūz , and dimensionless tip rotations, ϕ̄x and ϕ̄y , for a cantilever quarter-
circle beam loaded by a transverse force Fz and a moment Mx at the tip where the beam is divided into a number
of BEAM elements of equal length. Displacements are non-dimensionalized by the theoretical values from (1).

number of Fz Mx

elements ūz ϕ̄x ϕ̄y ūz ϕ̄x ϕ̄y

1 0.75518 0.61488 1.39630 0.61488 1.40919 7.54247
2 0.94638 0.97743 1.03461 0.97743 1.06900 1.88713
4 0.98744 0.99679 1.00609 0.99679 1.01581 1.19440
8 0.99692 0.99933 1.00138 0.99933 1.00387 1.04708
16 0.99923 0.99984 1.00034 0.99984 1.00096 1.01168
32 0.99981 0.99996 1.00008 0.99996 1.00024 1.00291

torsional stiffness of the rectangular cross-section is taken as St = Ghw3/3. Results for the
BEAM element are shown in Table 2. The convergence rate is quadratic.

Table 2: Tip displacements (ux, uy, uz), and axis-angle tip rotation (ex, ey, ez, ϕ) for a cantilever beam loaded by
a a bending moment My = 100 Nm, and a torsional moment Mx = 25 Nm at the tip where the beam is divided
into a number of BEAM elements of equal length.

number of
elements ux [m] uy [m] uz [m] ex ey ez ϕ [rad]

2 -0.26535 -0.58038 -0.10839 -0.09369 0.22896 -0.96892 1.29676
4 -0.22751 -0.52344 -0.11870 -0.05070 0.24360 -0.96855 1.19382
8 -0.22037 -0.51231 -0.11918 -0.04457 0.24617 -0.96820 1.17157

16 -0.21870 -0.50966 -0.11925 -0.04318 0.24679 -0.96811 1.16621
32 -0.21829 -0.50901 -0.11926 -0.04284 0.24695 -0.96808 1.16488

2.4 Large displacements and large rotations, quarter circle beam

The fourth static benchmark is a large displacement and large rotation analysis of a cantilever
quarter-circle beam loaded at the tip, see Figure 2 . The undeformed radius of the quarter-circle
is R = 1 m and the dimensions of the rectangular cross-section are h = 0.02 m and w = 0.005
m. The loads at the tip are a transverse force Fz = 50 N, and a moment Mx = 50 Nm.
The torsional stiffness of the cross-section is taken as St = Ghw3/3. Results for the BEAM
element are shown in Table 3. The convergence rate is quadratic. Note that the displacements
and rotations are overestimated.

Table 3: Tip displacements (ux, uy, uz), and axis-angle tip rotation (ex, ey, ez, ϕ) for a cantilever quarter-circle
beam loaded at the tip by a transverse force Fz = 50 N, and a moment Mx = 50 Nm where the beam is divided
into a number of BEAM elements of equal length.

number of
elements ux [m] uy [m] uz [m] ex ey ez ϕ [rad]

4 -0.40626 -0.24861 0.77679 -0.00165 -0.82599 0.56369 1.33316
8 -0.30544 -0.18640 0.68800 0.06638 -0.84045 0.53781 1.14212

16 -0.28894 -0.18083 0.67622 0.07743 -0.84454 0.52987 1.11342
32 -0.28508 -0.17966 0.67355 0.08002 -0.84555 0.52786 1.10678
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2.5 Euler buckling, cantilever beam

In a linear buckling problem, the critical load mulipliers λ are determined by solving the
generalized eigenvalue problem, det(K0 + λKg) = 0. Here, K0 is the linear stiffness matrix
and Kg is the geometric stiffness matrix due to a reference load.

The first buckling benchmark is Euler or normal load buckling of a cantilever beam where
the beam is loaded by a compressive normal force Fx at the tip, see Figure 3. The beam has an
undeformed length l = 1 m and the dimensions of the rectangular cross-section are h = 0.02 m
and w = 0.01 m. The theoretical Euler buckling load is Fth = (π2/4)(EImin/l

2). Numerical

Figure 3: Euler buckling of a cantilever beam.

results for the buckling load Fcr are obtained for two types of elements, BEAM and BEAMNL,
where the beam is divided in a number of elements of equal length, see Table 4. Note that the
convergence rate is quadratic for BEAM elements and quartic for BEAMNL elements. Even if
a single BEAMNL element is used a fairly accurate result is obtained.

Table 4: Critical Euler buckling load of a cantilever beam for two types of elements.

number of BEAM BEAMNL
elements Fcr/Fth Fcr/Fth

1 1.215854 1.007522327
2 1.052387 1.000512141
4 1.012916 1.000032766
8 1.003217 1.000002060

16 1.000803 1.000000129
32 1.000201 1.000000008

2.6 Lateral buckling, cantilever beam

The second buckling benchmark is lateral buckling of a cantilever beam loaded by a lateral
force Fz at the tip, see Figure 4. The beam has an undeformed length l = 1 m and the dimen-
sions of the rectangular cross-section are h = 0.02 m and w = 0.002 m. The theoretical lateral
buckling load is Fth = 4.012 599 344 (EIminSt)

1/2/l2, where EImin is the smaller flexural
rigidity and St = Ghw3/3 the torsional stiffness. Numerical results for the critical lateral buck-
ling load Fcr are obtained for two types of elements, BEAM and BEAMNL, where the beam is
divided into a number of elements of equal length, see Table 5. Note that the convergence rate
is quadratic for both BEAM and BEAMNL elements, although the results for the BEAMNL
elements are more accurate. The convergence rate for the BEAMNL element is only quadratic
because the buckling mode involves torsion which is approximated by a linear rotation field.
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Figure 4: Lateral buckling of a cantilever beam.

Table 5: Critical lateral buckling load of a cantilever beam for two types of elements.

number of BEAM BEAMNL
elements Fcr/Fth Fcr/Fth

1 Inf 1.495290
2 1.220899 1.069138
4 1.046009 1.015367
8 1.011215 1.003862

16 1.002788 1.000969
32 1.000696 1.000243

2.7 Torque buckling, cantilever beam

The third buckling benchmark is torque buckling of a cantilever beam by a torsion moment
Mx at the tip, see Figure 5. The beam has an undeformed length l = 1 m and the dimension
of the circular cross-section is d = 0.02 m. If the torsion moment is semitangential, the theo-
retical torque buckling load is Mth = πEI/l (Ziegler (1968)), where EI is the flexural rigidity.
Numerical results for the critical torque buckling load Mcr are obtained for two types of ele-

Figure 5: Torque buckling of a cantilever beam.

ments, BEAM and BEAMNL, where the beam is divided into a number of elements of equal
length, see Table 6. Note that the convergence rate is quadratic for BEAM elements and quartic
for BEAMNL elements, since the buckling mode only involves bending.

2.8 Eigenfrequencies of a free beam

In an eigenfrequency analysis, the eigenfrequencies ω are determined by solving the gener-
alized eigenvalue problem det(K− ω2M) = 0. Here, K is the tangent stiffness matrix and M
is the mass matrix.

The first dynamic benchmark is the eigenfrequency analysis for a free vibrating beam. The
beam has an undeformed length l = 1 m and the dimensions of the square cross-section are
w = h = 0.02 m. For the torsional stiffness we use St = GkxIp, with the shear distribution
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Table 6: Critical torque buckling load of a cantilever beam for two types of elements.

number of BEAM BEAMNL
elements Mcr/Mth Mcr/Mth

1 Inf 1.102657791
2 1.273240 1.007498979
4 1.054786 1.000510386
8 1.013052 1.000032732

16 1.003225 1.000002060
32 1.000804 1.000000129

factor kx = 0.8436 from Timoshenko and Goodier (1987), and the polar area moment of inertia
is Ip = Iy + Iz. For the mass distribution the consistent mass matrix is used, where the rotary
inertia about the longitudinal axis is lumped in the nodes.

The theoretical eigenfrequencies are for the first longitudinal mode ωL = π
√

E/(ρl2),
the first torsional mode ωT = π

√
kxG/(ρl2), and the first and second bending mode ωB1 =

22.373 285 448
√

EIy/(ρAl4) and ωB2 = 61.672 822 873
√

EIy/(ρAl4).
The non-zero dimensionless eigenfrequencies are presented in Table 7. The zero eigenvalues

are not reported since both types of beam elements describes the rigid body modes exactly. The
eigenfrequencies are non-dimensionalized by the theoretic values. Note that the convergence
rate is quadratic for the longitudinal and the torsional modes and quartic for the bending modes.

Table 7: Dimensionless eigenfrequencies for a free vibrating beam modelled by a number of equal-length BEAM
elements. The eigenfrequencies are non-dimensionalized by the theoretic values.

number of Longitudinal Torsional First Bending Second Bending
elements ω̄L ω̄T ω̄B1 ω̄B2

1 0.913460 0.636618 1.199323890 1.486092409
2 1.044582 0.900315 1.002233033 1.137900472
4 1.013405 0.974494 1.001087275 1.006226715
8 1.003456 0.993585 1.000080650 1.000583565

16 1.000870 0.998394 1.000005238 1.000039344
32 1.000218 0.999597 1.000000330 1.000002504

2.9 Eigenfrequencies of a simply supported beam with pre-stress

The second dynamic benchmark is the eigenfrequency analysis for the vibration of a simply
supported beam with tensile pre-stress. The beam has an undeformed length l = 1 m and the
dimensions of the square cross-section are w = h = 0.02 m. For the mass distribution the
consistent mass matrix is used.

The theoretical value for the first bending eigenfrequency is ωBth = ω0

√
1 + α, with the

zero-load eigenfrequency ω0 = π2
√

EIy/(ρAl4) and the non-dimensional pre-stress α =
Fl2/(π2EIy).

The dimensionless eigenfrequencies for the BEAM element model are presented in Table 8
for a number of increasing levels of pre-stress. The eigenfrequencies are non-dimensionalized
by the theoretic values. Note the quartic convergence rate at zero pre-stress and the nearly
quadratic convergence rate at high pre-stress. Results for the same problem but now modelled
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Figure 6: Simply supported beam with tensile pre-stress for eigenfrequency analysis.

Table 8: Dimensionless first bending eigenfrequency ωB/ωBth for a simply supported beam with pre-stress F ,
modelled by a number of equal-length BEAM elements for a number of pre-stress levels α = Fl2/(π2EIy). The
eigenfrequencies are non-dimensionalized by the theoretic values ωBth.

number of α
elements 0 0.01 0.1 1 10 100

1 1.109917957 1.104409645 1.058265 0.784831 0.334653 0.110441
2 1.003946897 1.003037064 0.995543 0.955757 0.893954 0.441764
4 1.000259662 1.000012707 0.997990 0.987691 0.976943 0.971028
8 1.000016443 0.999953309 0.999437 0.996823 0.994197 0.993616
16 1.000001031 0.999985158 0.999855 0.999199 0.998542 0.998411
32 1.000000064 0.999996092 0.999964 0.999799 0.999635 0.999603

with BEAMNL elements are shown in Table 9. The convergence rate is quartic irrespective of
the level of pre-stress.

Table 9: Dimensionless first bending eigenfrequency ωB/ωBth for a simply supported beam with pre-stress F ,
modelled by a number of equal-length BEAMNL elements for a number of pre-stress levels α = Fl2/(π2EIy).
The eigenfrequencies are non-dimensionalized by the theoretic values ωBth.

number of α
elements 0 0.01 0.1 1 10 100

1 1.109917957 1.109818228 1.108929277 1.100816510 1.059172893 1.016296332
2 1.003946897 1.003943099 1.003909260 1.003601608 1.002054862 1.000504469
4 1.000259662 1.000259403 1.000257094 1.000236109 1.000130806 1.000026577
8 1.000016443 1.000016426 1.000016278 1.000014935 1.000008197 1.000001531
16 1.000001031 1.000001030 1.000001021 1.000000936 1.000000513 1.000000093
32 1.000000064 1.000000064 1.000000064 1.000000059 1.000000032 1.000000006

2.10 Eigenfrequencies of a rotating beam

The third and last dynamic benchmark is the eigenfrequency analysis of a beam rotating at
a constant angular speed Ω, see Figure 7. The beam has an undeformed length l = 1 m and
the dimensions of the rectangular cross-section are h = 0.02 m and w = 0.2 m. For the mass
distribution the consistent mass matrix is used.

For a rotating beam there are two distinct bending vibrations. The bending vibration where
the vibrating motion is perpendicular to the plane of rotation, here the xy-plane, is called the
the flap mode, whereas the bending vibration in the plane of rotation is called the lead-lag
mode. For the numerical model we calculate the first flap eigenfrequency and the first lead-
lag eigenfrequency for a range of rotational speeds Ω. The eigenfrequency of the first flap
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Figure 7: Rotating beam for eigenfrequency analysis.

mode ωFL is non-dimensionalized by the theoretical first flap eigenfrequency at zero speed
ωByth = 22.373 285 448

√
EIy/(ρAl4) and likewise the first lead-lag frequency ωLL is non-

dimensionalized by ωBzth = 22.373 285 448
√

EIz/(ρAl4). The rotational speed is chosen as
Ω = αωByth, where α ranges from 0 to 100.

Table 10: Dimensionless first flap eigenfrequency ωFL/ωByth for a rotating beam modelled by a number of
equal-length BEAM elements for a number rotational speed levels α = Ω/ωByth. The eigenfrequencies are non-
dimensionalized by the theoretic values ωByth.

number of α
elements 0 0.01 0.1 1 10 100

1 1.004754324 1.004806102 1.009918 1.427228 10.484302 104.260615
2 1.000483438 1.000537859 1.005911 1.442678 10.123374 100.434722
4 1.000032708 1.000090911 1.005836 1.466565 10.152925 100.070073
8 1.000002083 1.000061373 1.005913 1.473959 10.229131 100.040063

16 1.000000131 1.000059702 1.005939 1.475900 10.281906 100.066386
32 1.000000008 1.000059650 1.005946 1.476391 10.302030 100.122944

The dimensionless first flap eigenfrequency for the BEAM element model is presented in
Table 10 for a number of increasing levels of rotational speed. The eigenfrequencies are non-
dimensionalized by the theoretic value at zero speed. The convergence rate is quartic at zero
speed and the nearly quadratic at high speed. For high rotation speeds the first flap eigenfre-
quency approaches the rotational speed. The first vibration mode has concentrated bending near
the hub, whereas the rest of the beam nearly moves as a rigid body. However, at these high rota-
tion speeds the model can be become unstable. This is due to the element near the tip for which
the normal force vanishes at the tip. The unstable mode is therefore localized near the tip. This
instability is only caused by the way the system is modelled and does not correspond to a real
system instability. One way to avoid this problem would be to make the last element rigid.

Results for the same problem but now modelled with BEAMNL elements are shown in Table
11. Again the convergence rate is quartic at zero speed and nearly quadratic at high speed.
However, the accuracy is much higher than for the BEAM element.

The dimensionless first lead-lag eigenfrequency for the BEAM element model are presented
in Table 12 for a number of increasing levels of rotational speed. The eigenfrequencies are non-
dimensionalized by the theoretic value at zero speed. Note the quartic convergence rate at zero
speed and the nearly quadratic convergence rate at high speed. The first lead-lag eigenfrequency
increases more slowly with increasing rotational speed than for the first flap eigenfrequency.

Results for the same problem but now modelled with BEAMNL elements are shown in Ta-
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Table 11: Dimensionless first flap eigenfrequency as in Table 10 but now modelled by a number of BEAMNL
elements.

number of α
elements 0 0.01 0.1 1 10 100

1 1.004754324 1.004818710 1.011172576 1.517142979 11.662928 115.589396
2 1.000483438 1.000543260 1.006447510 1.479078935 10.574380 104.878129
4 1.000032708 1.000092382 1.005981809 1.476709951 10.374878 102.296082
8 1.000002083 1.000061749 1.005950380 1.476564560 10.320334 101.153429
16 1.000000131 1.000059796 1.005948379 1.476555572 10.310803 100.623037
32 1.000000008 1.000059673 1.005948254 1.476555012 10.309830 100.396704

ble 13. Again, a quartic convergence rate at zero speed and a nearly quadratic convergence rate
at high speed is observed.

Table 12: Dimensionless first lead-lag eigenfrequency ωLL/ωBzth for a rotating beam modelled by a number
of equal-length BEAM elements for a number rotational speed levels α = Ω/ωByth. The eigenfrequencies are
non-dimensionalized by the theoretic values ωBzth.

number of α
elements 0 0.01 0.1 1 10 100

1 1.004754324 1.004754344 1.004756340 1.004955 1.018323 3.149731
2 1.000483438 1.000483482 1.000487885 1.000928 1.039866 1.575727
4 1.000032708 1.000032790 1.000040914 1.000852 1.072761 1.755588
8 1.000002083 1.000002176 1.000011375 1.000930 1.082847 2.152984

16 1.000000131 1.000000227 1.000009704 1.000956 1.085487 2.391194
32 1.000000008 1.000000105 1.000009652 1.000963 1.086155 2.476297

Table 13: Dimensionless first lead-lag eigenfrequency as in Table 12 but now modelled by a number of BEAMNL
elements.

number of α
elements 0 0.01 0.1 1 10 100

1 1.004754324 1.004754470 1.004768949 1.006215682 1.140932 6.002008
2 1.000483438 1.000483536 1.000493286 1.001467229 1.089806 3.437691
4 1.000032708 1.000032805 1.000042385 1.000999212 1.086588 2.763748
8 1.000002083 1.000002180 1.000011751 1.000967626 1.086391 2.551374

16 1.000000131 1.000000228 1.000009798 1.000965615 1.086379 2.512544
32 1.000000008 1.000000105 1.000009675 1.000965489 1.086378 2.508545

3 CONCLUSIONS

In this paper some basic flexible beam benchmark problems have been presented. The set
of problem comprises linear static, non-linear static, buckling and eigenfrequency problems.
The set of problems is kept simple so a complete specification of the problems can be given.
Numerical results, with two versions of a beam element, have been given with a sufficient
number of significant digits so this can be used to compare results obtained by other methods.
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