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ABSTRACT So how do we find the coordinates of a point? We start with
This article presents a way to draw Euler angles such that the position of a point in the body given by the vectat. Of
the proper operation and application becomes immediately clear. course, this vector stays the same, whatever coordinate syste
Furthermore, Euler parameters, which allow a singularity-free  we use. Now let us assume that the space fixed coordinate syste
description of rotational motion, are discussed within the frame- is spanned by the three orthogonal unit veci@seé,,€,), also
work of quaternion algebra and are applied to the kinematics called the base vectors. To find the coordinates of the vectc
and dynamics of a rigid body. T expressed in the space fixed coordinate system we \irite,
Xé+ Y&, + &, The coordinates are the three scalagsandz
and a handy way to describe them is to group them in a list. Thi
1 Euler Angles list is then called the coordinate vector= (x,y,z). Note the
In rigid body mechanics we need to keep track of points for difference: the vector i whereas the coordinates of this vector

each body. The motion of such a body can be decomposed into €XPressed in some coordinate system rareeventually, if we

a translation and a rotation. Here we focus on the rotational part. Want to make calculations, which means to get away from the
One way to describe the rotation (the change in orientation) of formal descrlptlon and to do aptually something with numbers, it
a rigid body is by means of Euler angles. Or more precisely: a 'S' the_coordmate vect_or, which we use. These are the numbe
way to parametrize the rotation matrix is to use the three Euler that go into the calculating program.

angles [1]. For a rotation about a fixed origin, the rotation matrix The distinction is not necessary if we use only one coordi-
R is the orthogonal matrix which transforms the coordinates of a nate system, but in the case of a rotating rigid body we clearly
pointr from the body fixed coordinate system to the space fixed identify two coordinate systems: a coordinate system glued o
coordinate system, as in the body, which we call the body fixed coordinate system anc
denote by primed symbo(&,&,,€,), and the space fixed coor-
dinate systenté, &,,@,) which is our reference system. Next we

r=Rr', @) express the position afin the body fixed coordinate system as
inT = X8 +Yy¢, + 7€ and this defines the body fixed coordi-
with space fixed coordinatasand body fixed coordinates. hatesr’ = (X,y',Z) of pointr. As already said, for a rigid body
Since for a rigid body these body fixed coordinates are constant, (€se are constant.
Euler angles are a way to keep track of a point of the body in Now we can get back to the rotation matrix and the Euler
space. angles. Most textbooks (e.g. Goldstein [1], Hamel [2], Witten-
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burg [3], Lurie [4], Papastavridis [5], Shabana [6]) introduce Eu- non-coinciding origins are now immaterial and the role of the
ler angles (3—1-3) as follows. The body or body fixed coordinate two intermediate coordinate systems becomes clearer. They a
system can be oriented with respect to the space fixed coordinatepositioned at the the end of the first two pairs of cans.

system by means of three successive rotations. The sequence The rotation matribR is obtained by looking at the rotations
starts by rotating the body fixed coordinate system, which is ini- of the individual pairs of cans, figure 3. The first pair of cans
tially aligned with the space fixed coordinate system, by an angle
@ about theg, axis. The resulting coordinate system is then la-
belled (&,&,,&). In a second step the intermediate coordinate
system(&,&,, &) is rotated about thé; axis by an anglé to
produce yet another intermediate coordinate system denoted by
(€&,&y,€y). Finally this (& ,€,,&) coordinate system is ro-
tated about th&,; axis by an angle) to produce the body fixed
coordinate system labelle@,,&,,&,). The various stages of
this sequence are then illustrated by figure 1.

Figure 3. Euler angle sequence with ‘cans’ in series.

describe the rotation about tBgaxis by an anglgas in

cosp —sing 0
r=Rgp, with Ry={ sing cosp O |, (2
0 0 1
Figure 1. The three stages of rotation for Euler angles. and the coordinatq:s: (E, n, Z) of pointr in the(éﬁ,éq 7-é<) coor-

dinate system. The rotation matf, has a simple form, because
the rotation is about a coordinate axis. The second pair of car

Most modern first-time readers are now totally lost. The dJescribe the rotation about tBeaxis by an anglé:
process of successive rotation is complex and the drawing even

more. Therefore we propose to illustrate this sequence of rota-

tions about different axes by means of the so-called cans in series, . _ 1 0 . 0
figure 2. Each rotation about an axis is represented by a pair of p=Rep’, with Rg=( 0cosd —sinb |, 3)
cans rotating with respect to one another. Of course, the draw- 0 sin6 cosd

and the coordinatgs = (&',n’,{’) of pointr in the (&,&,,&y)
coordinate system. Finally, the last pair of cans describe the rc
tation about th&; axis by an angle:

cosy —singg O
p'=Ryr’, with Ry=| sing cosy O|. (4)
0 0 1

Figure 2. Eul [ ‘cans’ in series. - . .
'qure uierangies as cans in series Substitution of (4) in (3) and (3) in (2) leads to the complete

transformation of the body fixed coordinates to the space fixe
coordinatest = Rr’, where the rotation matriR in terms of the
three Euler anglegp, 6, 1) is the product of the three successive
rotation matrices, as in

ing is not entirely correct, the origins of the various coordinate
systems do not coincide. This drawback is yet the power of the
picture. The drawing of the cans in series can be looked upon as
an exploded view of the materialization of the Euler angles and
by such demonstrates the proper operation of the process. The R = RyRgRy. (5)
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Note the order in which the matrices are multiplied.
The inverse transformation of the space fixed coordinates to
the body fixed coordinates

r'=R7Ir (6)

is then given immediately by its transpose Figure 4. Euler angles and angular velocities.

R'=RT=RRgRy 7
velocity vectors at the corresponding pair of cans, with

sinceR is an orthogonal matrix. This result can also be found
by doing the successive rotations in reverse directanmgle— ~ - ~ . ~ .
—angle and in reverse order. Wy =&, @e=08, and Gy =Uey. (12)

The expressions for the components of the angular velocities
vector®@ in terms of the Euler angles and their time derivatives
are usually found by taking the time derivatives of (1), substitu-
tion of (6) and cancellation af, because the body fixed coordi-
nates are constant, leading to

The angular velocity of the body is the sum of these successiv
angular velocities = @y + Wg + @y. Then the components

of the angular velocity expressed in the space fixed coordinat
system(wy, wy, w,) are found by transforming the three angular
velocity vectors to the space fixed coordinate system and addin

F =RRr. (8) them up, as in
The matrixRRT is identified as an antisymmetric matrix because 0 5 0
differentiation of the orthogonality conditio®®R" = | leads to Wx _{o r o re| 0 13
RRT +(RRT)T = 0. This antisymmetric matrix is then calléal W =12+ e 0 TReRe | (13)
and represents the cross product of the compor{entsyy, w,) “r ¢ v

of the angular velocity vectad expressed in the body fixed co-

ordinate system such that Next after expansion of terms we find

F=060r =wxr. 9) o .
Wy 0 cogp sin@sinB ®
. . . . = | O sing — cospsin® 0], w=Au (14
Here we have used the tilde notation for the antisymmetric ma- “ ? " : (14)
o o . . Wy, 10 cod U]
trix @ from the vectorw, which is defined by the matrix—vector
notation for the vector cross produotx x = @x. This antisym-
metric matrix is where we have introduced the velocity transformation mafrix
and the list of Euler angles = (@,0,1). We say list, because
0 —w w it is not useful to consider them as a three-dimensional vector
w=| w, 0 —w]. (10) the standard vector addition and multiplication by a scalar do nc
—wy wx 0 correspond to the composition of rotations. The components c

the angular velocity of the body expressed in the body fixed co

The components of the angular velocity expressed in the spacerdinate systenoy = (0, 6, &%) can be found by transforming
fixed coordinate system can now be found by equating the matrix the angular velocities from (14) accordingd® = RTAu. An-

& with the expanded partial derivatives from (8) as in other approach is to look at the series of cans from figure 4, an
to transform the individual angular velocities from (12) to the
body fixed coordinate system as in

~ aR T - aR T M aR T -
=—R —R —R". 11
W, 0 9 0
This is a long an tedious road. A shortcut is given by inspection W | =(0|+Ry[0]+RyRg |0 (15)
of figure 4. The rates of the Euler angles are drawn as angular o, Wy 0 (0]
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which after expansion of terms gives us

o, singsin cosy 0\ /¢ D
W, | = | cosysin® —siny 0 8|, w=Bu (16) ]
o cosf 0 1 W
The velocity transformation matricédsandB = RT A both have ¥
a determinant of-sin® and therefore show a singularity at (@ )

8 = 0+t In this configuration it is not possible to uniquely de-
termine the rate of the Euler angles from the angular velocities. Figure 5. Two examples of the usage of cans in series for depicting ro-
This is usually referred to as ‘gimbal lock’. The gimbal lock  tational motion: (a) an arm-like manipulator, and (b) a bicycle model [9].
becomes apparent if one looks at the pair of cans in the singular

configuration, for example the initial configuration from figure 4.

In this case all rotation axes of the cans are in one plane. No out- Finally, the pair of cans are successful not only for depicting
of-plane angular velocity, in this casg, can be resolved by the  Euler angles but also for illustrating relative rotation in general.
rate of the Euler angles. In figure 5 on the left a model is shown of an arm-like manipu-

With the Euler angles as generalized coordinates we are ablelator, the cans drawn at the base show the proper direction ar
to derive the equations of motion of a rigid body in terms of Euler order of rotationsx andB. The same figure on the right shows
angles and their time derivatives. We start with the equations of a bicycle model from [9] where the pair of cans at the rear huk
motion for the rotation of a rigid body in space with the compo- are used in an Euler angle manrigx ¢, 6g) but where the other
nents of the inertia tensor as matdxand the vector of applied pair of cans are used to illustrate the rear wheel rotaligrthe
torquesM’, all at the centre of mass expressed in the body fixed steering angl®, and the front wheel rotatiod .
frame, being

J =M - x (Juo). a7 2 Quaternions, Finite Rotation, and Euler Parameters
The problem of gimbal lock can be resolved by using Euler
Next we apply the principle of virtual power parameters to parametrize the rotation maRixEuler parame-
ters are unit quaternions [7,10]. A quaternion is a collection of
(M 76— x (Y)) 86 =0 vV {3 =B3i}, (18) four real parameters, of which the first is considered as a scal:

and the other three as a vector in three-dimensional space. Tl

_ . . following operations are defined. df= (qo,q) = (do, 11, A2, 03)
and substitute the angular velocities (16) and accelerafibrs andp = (po,p) = (Po, P, P2, P3) are two quaternions, their sum
Bl +Bu. The equations of motion for the rotation of a rigid body ;5 defined as

in terms of the Euler angles and their time derivatives are now
BTIBU=BT[M' - (BU) x (JBU)—JBU].  (19) g+ P=(Go+ Po,q+Pp), (22)

Note that these equations show the same singularity at gimbal and their product (non-commutative) as
lock as the velocities (16).
A computationally far more efficient way to calculate the
motion of a rigid body is not to transform the equations of motion 9o p=(doPo—0-P,GoP + Pod +0 x P). (23)
to the generalized coordinates but instead to use the angular ve-
locitiesw’ together with the Euler anglesas state variables [8].  although non-commutative, the quaternion product is associa

The state equations then become tive and satisfies o (poq) = (rop)oqg. The adjoint quater-
nion of g is defined ag] = (qp, —q) and the length or norm as

e ldl = /(@oa)o = /g3 +0-q. Note thatjgo p| =|q||p|. There

u=B"w, (21) are two special quaternions, the unit elemést (1,0) and the

zero elemen® = (0,0). The reciprocal of a quaternian£ 0 is

where the presence of gimbal lock becomes evident through the ! = G/|q|?. The quaternion with a norm of ongg| = 1, is a
set of equations (21). unit quaternion.

W =M - x (), (20)
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If a quaternion is considered as a four-dimensional vector, Since the Euler parameters are unit quaternions the subsidia
the quaternion product can be described by a matrix—vector prod- condition,

uct as
B+ai+ B+ =1, (30)
qu_(%oqolsqm)(%O>_Q<%O)’ - L
24 must always be satisfied. The quaterniéin (25) can now be
T associated with the algebraic components of a vector in a bod
poq= (qo I_q ~) (p°> =Q < po) . fixed frame and the quaternionas the corresponding compo-
9 Qls—=q/\ P P nents expressed in a space fixed frame.
The Euler parameters for successive rotations, where the
Any pair of quaternion matrice® andP commute,QP = PQ. seguence of rotations are described by the Euler parameteds
The matrices of the adjoint quaternigrareQT and@T. p, are given by their quate_rnion produrt por. This prqperty
If we associate the quaternioti = (0,x') with the three- can successfully be used if one knows the initial rotatoand
dimensional vectox’ and define the operation, with the unit the final configuratiorg and needs to calculate the relative rota-
quaterniorg, as tion r. Simple quaternion calculus givesius pog.

Before we derive the rotational equations of motion for a

spatial rigid body in terms of Euler parameters we have to ex

x=qoXoq t=qoXoq, (25) press the angular velocities and accelerations in terms of the E
ler parameters and its time derivatives. By differentiation of the

then this transformation, frox to x, represents a rotation. The ~ rotational transformation (25) as in

resulting quaterniorx is a vectorial quaternion with the same
length as<. The case of reflection, the other possibility, can be X=@oxX og+qox o0, (31)
excluded. The rotation matriR in terms of the unit quaternions

g can be derived from equation (25) as and substitution of the body fixed coordinates accordingf te

Qoxoq, realizing thago qis the unit elementl, 0), the velocity
x= (B —q-q)X +20(qxx)+2(q-X)g=RxX  (26) reads

with X = ofox+Xoqo0. (32)
B+~ -3 2(qiG2—Gods) 2(0103 + GoGe) The scalar part of the produci® g andqoq are zero, since
R=| 2(001+0ods) 03— 03+05—03 2(0edz—Coth) |- is a unit quaternion, and the vector parts are opposite so we m:
2(0301 — Qo%2)  2(QsG2+GoG1) 95— G5 — Q3+ write: qoq = (0,w) andgqoq= (0,—w). The velocityx now has
(27) a zero scalar part, as expected, and a vectorial paft2w x X,
This rotation matrix can also be written with the help of the sow = 2w. We conclude that the angular veloctyexpressed
quaternion matrix representation according to in the space fixed reference in terms of the Euler paramgters
and its time derivatives is given by
-
(%) - -ae 29) oy e
W= 24oq or <w>:2Q (q) (33)

The quaterniom in the rotation matrixR according to equation . ) o
(27), is identified as the set of Euler parameters for the descrip- The inverse, the time derivativegof the Euler parameters for
tion of finite rotation. According to Euler's theorem on finite ~givend andw, can be found as
rotation, a rotation in space can always be described by a rota-
tion along a certain axis over a certain angle. With the unit vector o1 : 1_/0
; : o —Zwoq or (P) =20 (34)
€u rt_apresentlng the axis and the angl_e of rotafipright-handed a= 2 q q) 2 W/
positive, the Euler parameteggan be interpreted as

Note that these time derivatives are always uniquely defined, oy
Qo =cogp/2) and q=sin(y/2)e,. (29) posed to Euler angles or any other classical combination of :
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parameters for describing spatial rotation like for example Ro-
drigues parameters or Cardan angles. The angular velogaities

arbitrary virtual Euler parameter velocitiédgp,5q) and adding

expressed in a body fixed reference frame can be derived in the(37) or (38) yields

same manner, or by application of the rotational transformation
(28), as

. 0 )
o-moq o (§)-2"(®). @)
and with the inverse
o1 QP)_1 0
q_zqooo or (Q)_ZQ(&’)' (36)

The angular accelarations are found by differentiation of the ex-
pressions fow andwy, resulting in

0) &7 (%o 12
(@)= (®)(T) e
and expressed in the body fixed reference frame
0\ _ ,qT (b0 g1
((}o’>_2Q <q)+2< 0 ) (38)

The inverse, the second order time derivati§ied the Euler pa-
rameters in terms af, g andw, goes without saying.

The equations of motion for the rotation of a rigid body in a
space (17) can be expressed in terms of Euler parameters and it
time derivatives by application of the principle of virtual power
and introduction of the Lagrangian multipliefor the norm con-
straint (30) written as

P=05++0B+0—1=0, (39)

resulting in the virtual power equation for a rigid body as

(M =06 — & x (Jw))T8w = A5D. (40)
The virtual constraint rate can be derived from (39) as
8P = 2qodGo + 29" 5. (41)

The equations of motion can be obtained by substitution of the
virtual constraint rates (41) and the angular velocities (35) and
accelerations (38) in the virtual power equation (40). Assuming

6

S

oo"
2(d,q

)] [®

the constraints on the accelerations of the Euler parameters fro
q q

D

. T
2Q<,\2,)+8Q<8%,

~2|gP?

(<L
| @)

These are the constrained equations of motion for a single rigi
body expressed in terms of Euler parameters. The multiplier
can for this single body be obtained by premultiplying the first
four equations by(go,q)" and is indentified as twice the rota-
tional kinetic energy of the body

(3) (3o ()

The transformations of an applied torque, body fik&cor space
fixed M, to the torque paramete($o,f), which are dual to the
Euler parameters, are apparently

(7)=2(w): oo (7)-2(n) w

Again, as in the case of the Euler angles, the equations of motio

00"
0J

Jo

q (43)

need not always be transformed into Euler parameters and the
time derivatives. It is computationally far more efficient to cal-
culate the motion of a rigid body using the angular velocitiés
together with the Euler parametags= (qo,q) as the state vari-
ables. The state equations then become

@ =JUYM - x (JW)), (45)
w) 1./0
(3)-20(a) )

Numerical integration of these equations will lead to errors in the
constraint equation (39) which can be resolved by renormalisin
the Euler parameters, asdn= q/|q|. This is known as the coor-
dinate projection method and if preformed after each numerice
integration step proves to be accurate and stable [11].

The use of Euler parameters within the general purpos
multibody dynamics software package SPACAR [12] has, ovel
the years, proved to be a success mainly due to the singularit
free and fast calculation of rotational motion.
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3 Conclusions

Drawing rotational motion by a pair of cans in series leads
to unambiguous interpretation of the rational motion. Euler pa-
rameters lead to singularity-free and fast calculation of rotational
motion. Application of quaternion algebra eases the derivation

of the necessary expressions.
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