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Abstract. A method for analysing flexible multibody systems in which the elastic deformations
are small is presented. The motion is considered a gross non-linear rigid body motion with small
linear vibrations superimposed on it. For periodic gross motion, this results in a system of rheo-
linear differential equations for the deformations with periodic coefficients. The determination of
the required equations with a program for flexible multibody systems is discussed which calculates,
besides the periodic gross motion, the linearized, or variational, equations of motion. Periodic solu-
tions are determined with a harmonic balance method, while transient solutions are obtained by an
averaging method. The stability of the periodic solutions is considered. The procedure has a high
computational efficiency and leads to more insight into the structure of solutions. The method is
applied to a pendulum with an elliptical motion of its support point, a slider-crank mechanism with
flexible connecting rod, a rotor system, and a Cardan drive shaft with misalignment.
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1. Introduction

A number of formalisms for deriving the equations of motion of rigid and flexible
multibody systems are available [1, 2] and have nowadays been implemented in
computer codes [3]. With these codes it is possible to make simulations of the
motion of the systems under consideration. The simulation is made by numerical
integration of the equations of motion, that is, by performing a transient analysis
with a specific set of initial conditions.

For many applications to engineering problems a model in which all structural
elements are rigid suffices for a quick judgement about the motion and forces in
a system. In cases where a high accuracy is required, for instance in positioning
mechanisms, or the structural elements are rather compliant, vibrations due to de-
formation can become important and have to be considered. Incorporation of these
deformations in the dynamic analysis of the system enlarges the number of degrees
of freedom, the frequency range of interest and the stiffness of the differential
equations, which results in a longer simulation time.
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The basic idea presented in this article is to superimpose small linear vibrations
on a prescribed nominal rigid body motion. This idea is inspired by computational
results from simulations of flexible multibody systems where one often recognizes
a gross rigid motion with small-amplitude nearly harmonic vibrations added. This
idea can at least be traced back to Cleghorn et al. [4].

The method of superimposition as presented here leads to systems of linear
differential equations with time-varying coefficients. In particular, if the gross nom-
inal motion is periodic, the coefficients are also periodic. The structure of the
solutions of the equations with periodic coefficients is given by the Floquet theory
[5]. Most books on this subject, for instance Yakubovich and Starzhinskii [6], deal
almost exclusively with the homogeneous system and the determination of bound-
aries of regions of stable solutions in a parameter space. The book by Bolotin [7]
is more directed towards applications in mechanics and includes a discussion of
forced systems and the influence of non-linear terms, as is relevant to the subject
of the present study.

Overviews of some of the numerical methods for analysing the systems are
given by Friedmann [8] and Aannaque et al. [9]. We propose to use a harmonic
balance method for determining periodic solutions, a kind of averaging method for
transient solutions and a method directly based on the Floquet theory for stability
analysis.

There are several ways to interpret the superimposition procedure. It can be seen
as a first step in a regular perturbation expansion of the solution, or as a first step
in an iterative solution procedure as proposed by Ling and Wu [10] and applied
by Cardona et al. [11]. Our main point of view is that it should be interpreted as
a first step of a Newton–Kantorovich method [12]. This method has the advantage
that no small parameter has to be identified in advance and that it is robust, so in
each step the linearization and the solution of the linearized problem has only to
be carried out to a certain precision and remaining errors can be accounted for in
the next step. Quadratic convergence is guaranteed if the initial approximation is
sufficiently close to a solution, the non-linearity is small and the linear operator is
not nearly singular.

The article is organized as follows. In Section 2 the formulation of the equations
of motion for multibody systems is summarized for the flexible non-linear model,
for the rigid model and for the linearized small vibration model. The solution tech-
niques for the small vibrations are discussed in Section 3, where we distinguish
between the periodic and transient solution, and give a method for determining the
stability. Finally in Section 4, four examples are presented: first, a pendulum with
prescribed elliptic motion of its support point, which leads to a forced Mathieu
equation; second, a slider-crank mechanism with flexible connecting rod; third, a
rotor dynamic system with isotropic bearings; and fourth, the dynamic analysis of
a flexible drive shaft connected by two universal joints.
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An outline of the methods has been presented earlier [13]. Here, the solution
techniques are explained in more detail and applications to planar as well as spatial
systems are given.

2. Equations of Motion

The equations of motion are derived with the formalism that has been devel-
oped at our institute [14–16], which has been implemented in a program called
SPACAR [17]. The formalism is based on a finite element method for modelling
and analysing the motion of planar and spatial multibody systems with rigid and
flexible links. With the help of a rather limited number of element types it is pos-
sible to model a wide class of systems. Typical types of elements are beam, truss
and hinge elements, while more specialized elements can be used to model joint
connections and transmissions of motion.

2.1. GENERAL FLEXIBLE MODEL

In a finite element description of a multibody system the configuration is described
by a number of nodal points with coordinates x and a number of elements with
deformation mode coordinates ε. The deformation mode coordinates depend on
the nodal coordinates and can be expressed as ε = D(x). Usually constraints are
imposed on some deformation modes and nodal coordinates, which we assume,
for the present context, to be holonomic. For instance, the conditions for rigidity of
element e are εe = De(xe) = 0. If the constraints are consistent, the coordinates can
locally be expressed as functions of the generalized coordinates q, the kinematic
degrees of freedom (configuration coordinates), by means of a transfer function F
as

x = F(q). (1)

The generalized coordinates can be chosen from components of the nodal coor-
dinate vector x and the deformation mode vector ε. For large motions a change
of generalized coordinates may sometimes be necessary. Generally the transfer
function cannot be calculated explicitly, but has to be determined by solving the
constraint equations in an iterative way. Derivatives are calculated by means of
implicit differentiation.

For each node and element, we determine a mass matrix Me and a force vector
fe, which give a contribution to the virtual power of δẋeT (fe−Meẍe). The unreduced
equations of motion are obtained by assembling the contribution of all elements
and nodes in a global mass matrix M and a global force vector f, which results in

δẋT [f(ẋ, x, t) − M(x)ẍ] = 0. (2)

Here, δẋ are kinematically admissible virtual velocities, which satisfy all instan-
taneous kinematic constraints. The degrees of freedom can be split in prescribed
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ones, qr , which are known explicit functions of time and represent the rheonomic
constraints, which are the prescribed input motions, and the dynamic degrees of
freedom qd . By differentiating the transfer function (1) we obtain

ẋ = F,qq̇, ẍ = F,qq̈ + F,qqq̇q̇, δẋ = F,qd δq̇d. (3)

Here a subscript comma followed by one or more variables denotes partial deriv-
atives with respect to these variables. The way in which higher-order derivatives
have to be multiplied by the juxtaposed vectors goes without saying. Substituting
these expressions in the virtual power equation (2) yields the reduced equations of
motion in state space form

M̄(qd, t)q̈d = f̄(q̇d,qd, t), (4)

with the reduced global mass matrix,

M̄ = FT
,qd MF,qd , (5)

and the reduced global force vector,

f̄ = FT
,qd [−M(F,qqq̇q̇ + F,qr q̈r) + f]. (6)

Details are given by Jonker [15].

2.2. NOMINAL GROSS MOTION

The state in which all elements are rigid is chosen as a nominal solution. The input
motions qr are prescribed periodic functions of time and the dynamic degrees of
freedom, qd , which describe the deformations, are identically equal to zero. In
order to maintain these prescribed values for the deformations, additional forces,
fd , dual to the deformation modes qd have to be introduced in the right-hand side
of the reduced equations of motion (4) and the sum of all reduced forces has to be
zero,

FT
,qd [−M(F,qrqr q̇r q̇r + F,qr q̈r ) + f] + fd = 0. (7)

From this equation the additional forces fd are found.

2.3. LINEARIZED EQUATIONS FOR SMALL VIBRATIONS

To describe the small vibration we have to linearize the equations of motion about
the nominal solution in which the deformation mode coordinates qd are zero. Lin-
earizing the reduced equation of motion (4) at qd = 0, q̇d = 0 and q̈d = 0 results
in

M̄�q̈d + C̄�q̇d + K̄�qd = −fd + fda. (8)
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Here M̄ is the system mass matrix from (5), C̄ is the velocity sensitivity matrix
and K̄ contains the stiffness terms; fd are the forces from (7) and fda represent
additional applied forces that are not included in the calculation of the nominal
solution. These arise from independently modelled elements or subsystems, for
instance actuators with a control system or bearings and seals in rotor dynamics.
M̄ is symmetric, but C̄ and K̄ need not.

The matrices of the linearized equations are determined in the following way.
First, for all elements and nodes the contribution to the global stiffness matrix K
and the global velocity matrix C are determined as

Ce = −(fe),ẋe , Ke = (Meẍe − fe),xe . (9)

These global matrices having been determined, the matrices in the linearized
equations are given by

C̄ = FT
,qd CF,qd + 2FT

,qd MF,qdqq̇,

K̄ = FT
,qd KF,qd + FT

,qdqd [Mẍ − f]
+ FT

,qd [M(F,qdqq̈ + F,qdqqq̇q̇) + CF,qdqq̇]. (10)

The kinematics and statics of an independently modelled element e can be
determined from the transfer functions and the degrees of freedom as

�xe = Fe
,qd�qd,

�ẋe = Fe
,qd�q̇d + Fe

,qdqq̇�qd,

�ẍe = Fe
,qd�q̈d + 2Fe

,qdqq̇�q̇d + Fe
,qdqqq̇q̇�qd, (11)

from which the relative displacements, velocities and accelerations can be de-
termined. The additional reduced forces fdea follow from linearized constitutive
equations and inertia terms as

fdea = FeT
,qd (−Ke�xe − Ce�ẋe − Me�ẍe + fe), (12)

which gives contributions to the total reduced mass, velocity sensitivity and
stiffness matrices and right-hand side of the linearized equations.

The resulting set of linearized equations is amenable to several kinds of analysis,
such as the determination of stationary and periodic solutions, the investigation of
the stability of these solutions and the continuation of these solutions if a parameter,
for instance the driving speed of a mechanism, is varied [16, 18]. Model reduction
methods can be applied in addition.

3. Solution Techniques for Small Vibrations

The complete solution consists of the nominal gross rigid body motion, and a
periodic solution and a transient of the linearized equations superimposed on it.
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Our main objective is the periodic solution of the small vibrations. In this section,
approximate methods for finding the periodic and transient solution for the small
vibrations and a method for determining their stability will be discussed.

3.1. PERIODIC SOLUTION

The starting point for the periodic solution of the small vibration is the linearized
equation (8) with the excitation −fd , left over from the nominal solution, on the
right-hand side

M̄(ti)�q̈d + C̄(ti)�q̇d + K̄(ti)�qd = −fd(ti). (13)

Additional forces fda are assumed to have been absorbed in −fd if they are present.
Here ti denote the discrete times with i = 0, . . . , p and p being the total number
of discrete positions in which the system is calculated. The period of the system is
T = (tp − t0) = 2π/ω.

As a periodic solution of these equations we propose a truncated Fourier series
for �qd with the same fundamental frequency ω as the nominal gross motion,

�qd =
m∑

l=−m

�q̃d
l eilωt . (14)

Here m is the number of frequencies that is expected to determine the solution
to the required accuracy, which is usually much less than p/2. The unknown
coefficients �q̃d

l are calculated as follows. First, the linearized equation (8) is
transformed for every discrete moment in time as

�q̈d + P(ti)�q̇d + Q(ti)�qd = r(ti), (15)

with

P(ti) = M̄−1(ti)C̄(ti),

Q(ti) = M̄−1(ti)K̄(ti),

r(ti) = −M̄−1(ti)fd(ti). (16)

Second, the coefficients of this equation are transformed into Fourier series as

�q̈d +
(∑

k

P̃k eikωt

)
�q̇d +

(∑
k

Q̃k eikωt

)
�qd =

∑
k

r̃k eikωt . (17)

Here, the summation over k extends from −(p − 1)/2 to (p − 1)/2 for odd p and
from −(p−2)/2 to (p−2)/2 for even p. Third, the truncated Fourier series for �qd

(14) is substituted in the differential equations (17) and every individual harmonic
is balanced. This means that the convolutions are determined and the coefficients
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of exp(ikωt), (k = −m, . . . ,m) on both sides of the equation are balanced. This
results in a set of (2m + 1)n linear equations of the form∑

l

{Q̃k−l − (lω)2δklI + (ilω)P̃k−l}�q̃d
l = r̃k, (18)

with n the dimension of the deformation mode coordinate vector �qd and k and l

extend from −m to m. If k − l falls outside the range, the matrices Q̃k−l and P̃k−l

are replaced by zero matrices. From this harmonic balance (18) the coefficients
�q̃d

l can be solved. These coefficients are the harmonics of the periodic solution
and tell us how each frequency is present in the response. Finally, the result can be
interpreted in the time domain as in Equation (14).

3.2. TRANSIENT SOLUTION

The complete solution of the linearized equations consists of a periodic solution as
determined in the previous subsection and a transient solution that is added to it in
order to satisfy the initial conditions. The transient solution is constructed with the
help of the method of slowly varying coefficients and averaging [20, chapter 11].
This transient solution has to satisfy the homogeneous equations corresponding to
(8), which are rewritten as a system of first-order differential equations as

ẏ = A(t)y, with y =
[
�qd

�q̇d

]
,

A(t) =
[

0 I
−M̄−1(t)K̄(t) −M̄−1(t)C̄(t)

]
. (19)

The matrix A(t) from (19) is periodic with period T = 2π/ω as stated in Sec-
tion 3.1 and can be written as the sum of a constant part, A0, and a periodic part
with average equal to zero, Ã(t). The differential equations are transformed on the
basis of eigenvectors of the matrix A0, which results in

ż = [J0 + J̃(t)]z, (20)

where Y is the matrix of eigenvectors and

J0 = Y−1A0Y, J̃(t) = Y−1Ã(t)Y. (21)

If we assume that all eigenvalues of A0 are distinct, the matrix J0 is diagonal and
J̃(t) is in general a full time dependent matrix with period T , whose entries are
assumed to be small with respect to the diagonal terms of J0. A second transfor-
mation writes the differential equations on the basis of eigensolutions according to
the diagonal matrix J0 with slowly varying coefficients a(t). With

z = eJ0ta, (22)
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this results in a set of differential equations for the amplitudes a as

ȧ = [e−J0t J̃(t) eJ0t ]a. (23)

This equation is still fully equivalent to (19). Now if it is assumed that J0 contains
only well separated damped eigenfrequencies with a corresponding period that is
small in comparison with T , that is, the diagonal elements of J0 have negative real
parts, while their imaginary parts are much larger than ω = 2π/T , and have large
differences, only the diagonal terms of J̃(t) yield contributions after averaging. The
off-diagonal terms give rise to oscillating terms of the form J̃ij exp[(−J0ii + J0jj )t]
(i �= j ) which disappear in the process of averaging. The solution of the amplitudes
becomes

ai(t) = ai(0) exp


 t∫

0

J̃ii (τ ) dτ


 . (24)

Given the Fourier series of A(t) and of J̃(t), it would be tempting to try and find
the Fourier series of a(t). Owing to the non-linear operator exp(

∫
. . . dt) this is not

straightforward and we propose to solve for the transient solution according to (24)
and, if necessary, to calculate the Fourier series of the result.

If the assumptions are fulfilled, the first order averaging appears to have a suf-
ficient accuracy for our application. In other cases or when a higher accuracy is
required, direct numerical integration of the linearized equations can be used.

3.3. STABILITY OF THE SOLUTIONS

The stability of the solutions can be investigated by analysing the homogeneous
equations. Several methods can be used. For instance, if the method of slowly vary-
ing amplitude and averaging is used, as in the previous subsection, the stability is
directly determined by the eigenvalues of A0, as can be seen from (22) and (23). If
they have all negative parts, stability is expected if the approximation is sufficiently
accurate and the stability margin is sufficiently large. This method, however, is not
always reliable.

Another more exact method first calculates the monodromy matrix, after which
the characteristic multipliers are determined as the eigenvalues of this matrix [16,
18].

An approach is proposed here which is directly based on the theory of Floquet
[5]. This theory states that the solution of the homogeneous system consists of a
sum of 2n (2n is the number of first order differential equations in (19)) funda-
mental solutions of the form of a periodic function multiplied by an exponential
function (in the generic case of distinct characteristic multipliers). From these, the
characteristic exponents and hence the stability can directly be read.
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We assume fundamental solutions of the form

�qd = eλt

m∑
l=−m

�q̃d
l eilωt , (25)

where λ is a characteristic exponent. This expression can be substituted in the ho-
mogeneous equations (13) or an equivalent system of first-order equations (19).
By collecting terms with equal exponentials and equating the coefficients of
exp(λt + ilωt) (l = −m, . . . ,m) to zero, we obtain a set of homogeneous linear
algebraic equations for the values of �q̃d

l as∑
l

{λ2δklI + λVkl + Wkl}�q̃d
l = 0, (26)

with k and l ranging from −m to m. The individual matrices in (26) with dimension
n × n are given by

Vkl = P̃k−l + 2(ilω)δklI,

Wkl = Q̃k−l − (lω)2δklI + (ilω)P̃k−l . (27)

Again, if k − l falls outside the range, the matrices P̃k−l and Q̃k−l are replaced by
zero matrices. Non-trivial solutions for �q̃d

l are only possible if the determinant
of the coefficients from (26) is zero, which leads to an eigenvalue problem for the
characteristic exponents λ.

Because this determinant has the degree (2m + 1)2n, the number of character-
istic exponents obtained in this way is (2m+1) times as large as their true number.
They appear in clusters of values which differ approximately by an integral multi-
ple of iω and correspond to the same fundamental solution. From each cluster, only
the exponent that has the smallest imaginary part is considered as an approximation
for the true characteristic exponent. Algorithms that calculate only a subset of the
eigenvalues with the smallest absolute values [21] can be used to advantage.

This method of determining characteristic exponents can be seen as an exten-
sion of the method of truncated infinite determinants of Hill [22]. Also Bolotin [7]
gives a description. Naab and Weyh [23] use a similar method.

4. Examples and Comparison

4.1. PENDULUM

As a first example of the described method a pendulum with a forced elliptic motion
of its support point is considered. Especially the cases of purely vertical motion and
circular motion constitute well studied problems. The system, shown in Figure 1,
consists of a rigidly modelled vertical pendulum of length l = 1.0 [m] with a point
mass at the bottom end. The top end moves on an ellipse. This path is generated
by a hypocycloidal gear pair with a ratio of annulus over spur radius equal to 2.
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Figure 1. Pendulum with a forced elliptic motion of its support point.

This gear pair is also known as ‘Cardan circles’. The top end of the pendulum is
pin joined to the pinion at a distance er from the centre, in this way creating an
ellipse with major axis 2(1 + e)r and minor axis 2(1 − e)r. In this example the
pinion radius r is taken 0.5 [m] and the eccentricity factor e is 0.5. A crank with
a uniform angular velocity ω moves the centre of the pinion. In the joint between
the pendulum and the pinion a viscous damping is assumed which results in 1% of
critical damping in the linearized equations. The system operates in a gravitational
field with g = 9.81 [N/kg]. The non-linear equation of motion is given by

ϕ̈ + 2ζω0(ϕ̇ + ω) + ω2
0 sin ϕ + ρω2[sin(ϕ − ωt) + e sin(ϕ + ωt)] = 0, (28)

with the parameters ρ = r/ l, the relative damping ζ and the undamped eigen-
frequency of the isolated pendulum ω0 = √

g/l. The angle ϕ is measured from
the down-hanging vertical position. The linearized equation of motion, which
describes the small vibration �ϕ around ϕ = 0, is

�ϕ̈ + 2ζω0�ϕ̇ + [ω2
0 + (1 + e)ρω2 cos ωt]�ϕ

= −2ζω0ω + (1 − e)ρω2 sin ωt. (29)

The periodic solution for �ϕ is assumed to be a truncated Fourier series with
the fundamental frequency equal to the driving frequency ω. Notice that the
periodic solution of �ϕ will show a non-zero mean value due to the term re-
lated to the damping −2ζω0ω in the right-hand side of differential equation
(29). A characteristic value for the periodic solution is the amplitude �ϕ̂, being
(1/2)[(�ϕ)max − (�ϕ)min] (half of the range of �ϕ) over one period. This am-
plitude is shown in Figure 2 for a range of driving speeds ω. Resonance clearly
occurs at about 1/2 of the undamped eigenfrequency ω0. The 1/3 subresonance is
just discernible. If we compare this with the full non-linear response curves, the
dashed lines, we see approximately the same result; only the resonance peak bends
slightly backward due to the non-linearity. The non-linear response was calculated
with a shooting method as described by Meijaard [18]. Although we have shown
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Figure 2. Amplitude �ϕ̂ for the periodic solution of the pendulum for damping ζ = 0.01 in
the driving speed range of 0 < ω/ω0 < 0.9. The solid line is the linearized result, the dashed
line is the full non-linear result.

Figure 3. The solid line is the logarithmic amplitude �ϕ̂ for the periodic solution of the
pendulum for damping ζ = 0.01 in the driving speed range of 0 < ω/ω0 < 1.4. The dashed
line is the maximum of the real part of the dimensionless characteristic exponents λ/ω0.

the equation of motion and its linearization in an analytic form we must emphasize
that all calculations presented here were done in a discrete and numeric way as
described in the previous sections.

The same response on a logarithmic scale over a wider range of driving speeds
together with an indication upon the stability of the periodic solution is shown in
Figure 3. If the maximal real part of the characteristic exponents λ is negative, the
solution is stable. From the figure we see that stable periodic solutions can be found
within the ranges 0 ≤ ω/ω0 < 0.91 and 1.02 < ω/ω0 < 1.31. The instabilities
near ω/ω0 = 0.91 and ω/ω0 = 1.02 are of the transcritical type, in which a
characteristic exponent becomes zero and the resonance peaks become unbounded.
In the figure, the peaks remain bounded because the response was calculated for
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a finite number of discrete values of ω. Near ω/ω0 = 1.31 a Neimark–Hopf
bifurcation occurs, where a pair of complex conjugated characteristic exponents
cross the imaginary axis and no resonance appears. All periodic solutions within
the range 0.9 < ω/ω0 < 1.2 must be discarded due to the large amplitudes which
are in contradiction with the assumption of small vibrations.

4.2. SLIDER-CRANK MECHANISM

As a second and more engineering type of example a slider-crank mechanism
is considered. The same mechanism has been used as an example in a series of
publications by Song and Haug [24], Jonker [15] and Meijaard [18], among others.
With [18] a comparison will be made.

The system consists of a rigidly modelled crank of length 0.15 [m], a flexible
connecting rod of length 0.3 [m] and a plunger. The crank and the connecting rod
have a uniform mass distribution of 0.2225 [kgm−1], the mass of the plunger is
0.033375 [kg], the flexural rigidity of the connecting rod is EI = 12.72345 [Nm2]
and the centre line is assumed inextensible. The crank rotates at a constant angular
velocity ω, so this system is periodically forced. Two values of material damping
according to the Kelvin–Voigt model are considered, such that the damping in the
connecting rod of the first eigenmode for small vibrations when the crank is fixed
is 1% respectively 2% of critical damping. The connecting rod is modelled by two
planar beam elements (4 dynamic degrees of freedom).

Figure 4 shows the periodic and the total, summed periodic and first period
transient, response for ω = 150 [rad/s] of the dimensionless lateral deflection of
the centre of the connecting rod, that is, the distance of the centre point of the rod
to the line connecting the endpoints divided by the reference length of the rod.
The deformations and deformation rates are zero at t = 0 and the shown solutions
correspond to the 2% damping case. If we compare the linearized results with the
results from Meijaard [18] we note the good agreement. However, in the transient
response we see a small difference at the start, due to non-linearity and inaccuracy
in the process of averaging.

Figure 5 shows the dimensionless maximal midpoint deflection for different
values of the angular velocity of the crank for the periodic solution. Resonances
occur at about 1/5, 1/4 and 1/3 of the first eigenfrequency. For the numerical model
of the connecting rod with pinned joints and modelled by two beam elements,
this frequency is 832 [rad/s]. If we compare this with the full non-linear response
curves, the dashed lines, we see that the resonance at 1/5 of the first eigenfrequency
is not observed and the resonance peaks bend backwards owing to the non-linearity.

Figure 6 shows the amplitude of the first four harmonics of the periodic solu-
tions as a function of the driving frequencies ω in the same range as Figure 5. The
dotted lines show the corresponding quasistatic forcing solution, i.e. the harmonic
forcing multiplied by the inverse of the average stiffness matrix. It is clearly seen
that the third harmonic has a resonance peak near 1/3 of the first eigenfrequency
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Figure 4. Dimensionless midpoint deflections of the connecting rod at ω =150 [rad/s] and a
damping of 2%. The smooth curves are the periodic solutions and the oscillating curves are
the sum of the periodic and the transient solutions. The drawn lines are the linearized results,
the dashed lines are the full non-linear results from Meijaard [18].

Figure 5. Maximal dimensionless midpoint deflections of the periodic solutions for 1 and
2% damping in the driving speed range of 150 < ω < 300 [rad/s]. The drawn lines are the
linearized results, the dashed lines are the full non-linear results from Meijaard [18].

and also a secondary peak near 1/4 of this frequency. This phenomenon can be
observed in nearly all harmonics. The most interesting one is the fourth harmonic,
which shows a resonance peak near 1/4 of the first eigenfrequency, notwithstand-
ing the fourth harmonic in the forcing is absent. In the non-linear analysis the lower
solution around the backbones is unstable and the jump phenomenon can occur.
This is not present in the small vibrations model.
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Figure 6. The amplitude scaled from 0 to 0.04 of the first four harmonics for 2% damping in
the driving speed range of 150 < ω < 300 [rad/s] from Figure 5. The dotted lines show the
quasistatic forcing solution.

4.3. ROTOR DYNAMICS MODEL [25]

It will be shown how the approach of this article can directly be applied to de-
rive rotor dynamic models and to analyse their linearized behaviour. In order to
assess the validity and accuracy of the models, a comparison with a problem from
literature [26] is made.

By the linearization procedure the structural equations of the rotor system
are obtained in a linearized form, where a splitting can be made of terms that
are independent, linear, or quadratic in the rotary speed or linear in the angular
acceleration. The kinematics of the additional elements such as bearings, seals,
squeeze film dampers and air gaps, can be linearized in the same way, as shown
in Equation (11). The constitutive equations of these elements can be added to the
structural equations as explained by Equation (12). In the context of the present
article, these have to be linearized. If the original non-linear model is comprehen-
sive, all kinds of effects that give a contribution to the linearized equations, such as
load-dependent terms, initial deflections, and mass unbalances, are automatically
taken into account.

As the data for the example was originally given in imperial technical units, the
following conversion factors have been used, where needed: 1 [in] = 0.0254 [m];
1 [lb] = 0.45359237 [kg]; 1 [lbf] = 4.4482216 [N]; normal acceleration of gravity
gn = 9.80665 [N/kg].

The example system consists of a solid circular cylindric shaft of length 50
[in] and diameter 4 [in] made of steel with density 0.283 [lb/in3] and modulus of
elasticity 3.0 · 107 [lbf/in2] (Figure 7). This shaft is supported at one end and at
a position 10 [in] from the same end by isotropic bearings with stiffness 100 000
[lbf/in]. A liquid annular seal is placed 20 [in] from the same end. This seal is not
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Figure 7. Rotor system consisting of a shaft, two isotropic linearly elastic bearings, a seal and
two disks.

included in the calculation of the nominal solution. The additional forces exerted
on the shaft are given by the linearized equations[

fy

fz

]
= −

[
K k

−k K

] [
�y

�z

]
−
[

C c

−c C

] [
�ẏ

�ż

]
. (30)

Here, fy and fz are the lateral forces on the shaft, �y and �z are the lateral
displacements, and K = 89 542 [lbf/in], k = 27 028 [lbf/in], C = 171.42 [lbf s/in]
and c = 12 [lbf s/in] are the stiffness and damping parameters of the seal. The
constitutive equations are the same in a co-rotating reference frame. In addition a
part of the mass of the seal, 6.68 [kg], is added to the shaft at the position of the
seal. Two disks with mass 0.028 [lbf s2/in], axial moment of inertia 0.224 [lbf s2in]
and transverse moment of inertia 0.114 [lbf s2in] are placed at the other end and 10
[in] away from that end.

The eigenfrequencies when the shaft turns at 4000 revolutions per minute are
calculated. The shaft is modelled with five finite beam elements of equal length
with neglected shear deformations but with inclusion of the rotary inertia of the
cross-section of the shaft. As the eigenfrequencies are determined with respect to a
co-rotating frame of reference in the present study, the corresponding frequencies
with respect to a stationary frame are determined by adding the rotary speed to
the frequencies of forward whirling modes and subtracting this speed from the
frequencies of backward whirling modes. The first eight eigenvalues are given in
Table I; for comparison, the values from [26] are listed in the same table. The
differences are less than one percent, despite some difference in modelling. Note
that for the first pair of modes, the forward whirling mode has a lower frequency
than the corresponding backward whirling mode.

4.4. CARDAN DRIVE SHAFT

The last example is the dynamic analysis of a flexible drive shaft connected by two
universal (or Cardan, or Hooke’s) joints. The input and output shaft are assumed
rigid, parallel and rigidly supported in lateral direction. The drive shaft is mounted
in the plane of the input and output shaft under a misalignment angle α. The two
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Table I. Eigenvalues (in [rad/s]) of an example rotor system; the
results of the present study and those from [26] are given for
comparison.

forward/backward present from [26]

forward –7.97 + 223.62 i –8.04 + 224.13 i

backward –45.93 + 226.44 i –45.87 + 226.05 i

backward –277.46 + 988.02 i –277.95 + 988.32 i

forward –205.18 + 1030.30 i –205.31 + 1031.00 i

backward –44.45 + 1893.45 i –44.30 + 1893.95 i

forward –45.51 + 1921.67 i –45.77 + 1922.70 i

backward –158.01 + 4232.13 i –158.48 + 4233.10 i

forward –153.39 + 4302.12 i –153.89 + 4305.32 i

Figure 8. Drive shaft connected by two in-plane universal joints.

universal joints are mounted in such a way that, for a rigid drive shaft, the rotation
of the output shaft equals the rotation of the input shaft (see Figure 8).

The misalignment causes an uneven angular velocity of the drive shaft of

ω′ = cos(α)

1 − sin2(α) cos2(ωt)
ω, (31)

where α is the angle of misalignment. To this unevenness corresponds a variation
of the drive shaft torque

Mt = 1 − sin2(α) cos2(ωt)

cos(α)
M0. (32)

In addition, a bending moment is induced in the drive shaft by the applied torque
of

Mb = tan(α) cos(ωt)

√
1 − sin2(α) cos2(ωt)M0. (33)

These results can be found for instance in [27].
The drive shaft of length 1.0 [m] has a solid circular cross section with radius

0.03 [m]. The shaft made of the steel has a mass density of 7850 [kg/m3], a modulus
of elasticity E = 210 · 109 [N/m2] and Poisson’s ratio of ν = 0.3. The centre line
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Figure 9. Maximal dimensionless midpoint deflection (v/l)max for the periodic solution of
the drive shaft in the driving speed range of 0 < ω/ωb < 1.0. The thin lines between circles
are the regions of unstable periodic solutions.

of the shaft is assumed inextensible. The material damping (Kelvin–Voigt) is such
that the damping of the first eigenmode for small transverse and torsional vibrations
is 1% of critical damping. The flexible shaft is modelled by two beam elements
(no shear deflection). The misalignment angle α is π/6 [rad]. At the output side
a concentrated moment of inertia Io = 0.345555 [kgm2] is attached, simulating
the reduced moment of inertia of the driven system. The input shaft is driven at
a constant angular velocity ω while on the output shaft a constant torque Mo =
1060.288 [Nm] is applied, opposed to the direction of rotation, creating a situation
of power transmission. The first two bending eigenfrequencies of the undamped,
pin jointed shaft are equal due to its symmetry and can be calculated as ωb = 766
[rad/s]. The concentrated moment of inertia, Io, is chosen in such a way that, if
there is no misalignment, the first torsional eigenfrequency of the undamped shaft
(with lumped rotary inertia) equals 1/

√
2 times the first bending eigenfrequency.

Figure 9 shows the maximal dimensionless midpoint deflection of the drive
shaft in the lateral plane for the periodic solution for different values of the driving
speed ω. Resonance occur at about 1/2, 1/3 and 1/4 of the first bending eigen-
frequency and not at the eigenfrequency itself. It is interesting to see that the
resonances at 1/2 and 1/4 show two peaks close together: the two initially equal
eigenmodes in the lateral plane are separated by the torque load in combination
with the misalignment. The thin lines between the circles show the regions of
unstable periodic solutions, these zones stretch from 0.65 unto 0.68 and from 0.78
unto 0.92. At the boundaries, a pair of complex conjugate characteristic exponents
crosses the imaginary axis and Neimark–Hopf bifurcations occur.

The computational effort for calculating, at every individual driving speed, the
gross motion, the linearized equations, and the periodic solution was in the order
of one second where the effort for determining the stability of the solution, by
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Figure 10. Maximal twist angle φmax for the periodic solution of the drive shaft in the driving
speed range of 0 < ω/ωb < 1.0. The thin lines between circles are the regions of unstable
periodic solutions.

calculating the characteristic exponents according to (26), was in the order of one
minute. Algorithms that calculate only a subset of the eigenvalues would speed up
the stability analysis.

Figure 10 shows the maximal twist angle of the shaft for the periodic solution
for different values of the driving speed ω. Keeping in mind that the first torsional
eigenfrequency equals 1/

√
2 times the first bending eigenfrequency ωb we see that

resonance clearly occurs at about 1/2, 1/3 and 1/4 of the first torsional eigenfre-
quency. Again resonance at the eigenfrequency itself is not present. The resonance
at 1/2 of the first bending eigenfrequency is due to the coupling between the bend-
ing and the torsion modes. The maximal twist angle at minimum and maximum
driving speed is 0.012 [rad], which is about 20% higher than the static twist angle
at zero misalignment.

Figure 11 shows the amplitude on a logarithmic scale of the first seven harmon-
ics of the dimensionless midpoint deflection of the shaft for the periodic solution as
a function of the driving speed ω in the same range as Figure 9. All even harmonics
are zero due to the symmetry of the system. First of all the coupling between
bending and torsion is visible in the deflection at zero speed. Second we clearly see
all subharmonics resonance with decreasing amplitudes at increasing harmonics.

Figure 12 shows the same presentation for the twist angle. Now all odd harmon-
ics are zero due to the symmetry of the system. Harmonic number zero shows the
average twist angle which is about constant over the range of speeds. In the second
harmonic we clearly see the resonance at 1/2 of the first bending eigenfrequency
together with resonance at 1/2 of the first torsion eigenfrequency. Note the high
amplitude contribution of the 4th harmonic at ωb/2.

All results presented here show hardly any difference with full non-linear
results.
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Figure 11. The logarithmic amplitude of the first seven harmonics for the dimensionless
midpoint deflection v/l of the drive shaft from Figure 9 in the driving speed range of
0 < ω/ωb < 1.0.

Figure 12. The logarithmic amplitude of the first seven harmonics for the twist angle φ of the
drive shaft from Figure 10 in the driving speed range of 0 < ω/ωb < 1.0.

5. Conclusion

A method has been described for the calculation of small elastic vibrations super-
imposed on the gross rigid body motion of multibody systems. Periodic solutions
as well as transient responses can be determined. In the examples of a pendulum
whose support point moves in an elliptic orbit and a slider-crank mechanism with
flexible connecting rod, results of the approximate methods compare well with
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results from a full non-linear analysis with coupled gross motion and deforma-
tion, provided the deformations remain small. A third example has shown how
the method can be used to analyse a classical rotor-dynamical model with an in-
dependently modelled seal. Finally the application to a drive shaft has shown the
practicality for a real engineering problem.

Instability of the solutions generally shows itself by a large increase of the am-
plitude of the solution, where the linearized solution loses its value. In other cases,
as is shown in the last example, the solution may lose its stability in a Neimark–
Hopf (secondary Hopf) bifurcation without a large increase in amplitude and with
negligible non-linear effects.

The method is computationally efficient in comparison with a full non-linear
analysis, especially if the system is stiff, that means, high eigenfrequencies relative
to the driving frequency are present, or close to resonance peaks. The calculation
of the stability may cost one or two orders of ten more than the determination of
the periodic solution itself.

Although the method has been described in connection with a specific multi-
body formalism, it can be used with any formalism that yields linearized equations
in a state space form. Finally, procedures for finding the periodic and transient
solutions for the small vibrations in the case of a more general gross rigid body
motion, for example a motor driven mechanism with given motor characteristic,
are interesting and feasible topics for future work.
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