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ABSTRACT
This paper deals with the improvement in efficiency of sim-

ulations in flexible multibody system dynamics. On the basis
of concepts from component mode synthesis techniques some
improved elements for planar beams which are hinged at one or
both ends are developed. These elements show a considerable in-
crease in accuracy, or alternatively allow a reduction of the num-
ber of elements, with respect to a standard element with cubic
polynomial interpolation. The use of the elements is demon-
strated in two examples: a planar slider-crank mechanism with
a flexible connecting rod and a cantilevered beam in a spin-up
motion.

INTRODUCTION
In order to describe complex mechanical systems in suffi-

cient detail, finite element models with many degrees of freedom
are employed. Often many elements are needed to describe de-
tails of the shape and the stiffness and stress distribution. Owing
to the many re-evaluations needed in a dynamic analysis, it is
important to reduce the number of degrees of freedom as much
as possible, while the behaviour of the system is still described
with sufficient accuracy. Moreover, by the reduction the stiffness

1Dedicated to the memory of Dr R. Schwertassek.

of the system of the differential equations decreases, which al-
lows larger step sizes in explicit numerical integration methods,
and the overall speed-up of the computational process is consid-
erable.

A common approach to the reduction of a system is to use
a hierarchical description in which the system is divided into
components, or substructures, or superelements, which them-
selves are modelled by subcomponents or elements. The mo-
tion of each component is approximated by a linear combination
of some modes that are far less numerous than the degrees of
freedom in the detailed model. The reduced equations of mo-
tion for each subsystem are obtained from the principle of vir-
tual work, while the equations of motion of the complete system
are formed by combining these component equations and intro-
ducing the connections between the components. Hunn (Hunn,
1953; Hunn, 1955) first used this technique for linear vibra-
tion problems. Hurty (Hurty, 1960) introduced the designation
component mode synthesis for it. Several variants were devel-
oped which differ in the way the modes are selected. A class
of modes are vibration modes of the substructure with differ-
ent kinds of boundary conditions, for instance clamped inter-
faces as used by Hurty (Hurty, 1965) and Craig and Bampton
(Craig and Bampton, 1968). These modes are supplemented by
some static modes, as used in static condensation (Guyan, 1965;
Irons, 1965). Another choice of modes which depend on the
way in which the substructure is loaded was proposed by Wilson,
Yuan and Dickens (Wilson et al., 1982) and generalized by Léger
(Léger, 1988). The application of component modes to describe
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small deformations of bodies which undergo large rotations was
shown in (Shabana and Wehage, 1983); load-dependent modes
were used in (Yeh and Dopker, 1990). Further references to the
extensive literature can be found in several review articles; Noor
(Noor, 1994) discusses general reduction methods, while reviews
on componentmode synthesis methods are given in (Craig, 1981;
Greif, 1986; Craig, 1995; Seshu, 1996).

In this paper some methods for building superelements for
components are applied to beams in planar motion. It is ar-
gued and shown in an example that the use of the proper load-
dependent modes for the deformations leads to the most satis-
factory results. Besides, the inclusion of non-linear terms in the
combination of modes which capture geometric non-linearities is
shown to be possible.

In the next section, the finite element approach to modelling
multibody systems is reviewed and several versions of a planar
beam element are derived. Then the elements are applied in two
examples: a slider-crank mechanism with a flexible connecting
rod and a cantilevered beam in a spin-up motion. The paper ends
with some conclusions.

PLANAR BEAM ELEMENTS

Formulation of the Equations of Motion
The finite element method as presented in (Jonker, 1989;

Jonker and Meijaard, 1990; Meijaard, 1991) is used for build-
ing models for flexible multibody systems. A model for a sys-
tem is built up from elements which are connected at nodes. A
typical element e has a number of nodes with nodal coordinates
xe, which may include Cartesian position coordinates and co-
ordinates that parametrize rotations. Generalized deformations,
or strains, εe, are related to the nodal coordinates by deforma-
tion functions as εe �De�xe�, which are invariant under arbitrary
rigid-body displacements. Each element gives a contribution to
the virtual work of the system, where inertia terms are included
according to D’Alembert’s principle and ideal constraint forces
which eventually drop out of the equations need not be included,
of the form

δxe��fe�Meẍe��δεe�σe� (1)

Here, fe � fea�he is the element force vector, which contains the
element applied forces fea and inertia terms he that are related to
the element mass matrix Me as

he
i �∑

j�k

�
∂Me

i j

∂xe
k
�

1
2

∂Me
jk

∂xe
i

�
ẋe

j ẋ
e
k� (2)

The generalized element stresses, σe, are energetically dual to
the generalized strains and are related to the strains by constitu-

tive equations. The prefix δ denotes a virtual quantity, where
the virtual strains are related to the virtual displacements by
δεei � ∑ j�∂De

i �∂x j�δxe
j. The contributions of the nodes to the

virtual work of the system have a similar form with the main
difference that nodes do not have generalized deformations.

In order to obtain the equations of motion for the system,
global vectors of nodal coordinates x, deformation functions
D�x�, strains ε � D�x�, forces f, stresses σ and a global mass
matrix M are introduced and all contributions to the virtual work
are collected as

δx��f�ẋ�x� t��M�x�ẍ��δε�σ� 0� (3)

The nodal coordinates x are related to the vector of independent
coordinates q by transfer functions Fx as x � Fx�q� t�. Similarly
the element deformations are related to the independent coordi-
nates by transfer functions as ε � Fε�q� t� � D�Fx�q� t��. These
transfer functions have to be consistent with the constraints of the
system and are not generally known in an explicit form, but have
to be determined by a numerical iterative process. For holonomic
systems, one can obtain expressions for the velocities, accelera-
tions and virtual displacements by differentiation of the transfer
functions. By substituting these in Eq. (3) and making use of the
fact that the variations δq are independent, we obtain the equa-
tions of motion for the system:

M̄�q� t�q̈ � f̄�q̇�q� t�� (4)

Here, M̄ is the system mass matrix and f̄ is the system force
vector.

Planar Beam Elements: General Considerations
In a finite element formulation, a section of a beam that

moves in a single plane is modelled by a planar beam element.
It is assumed that this beam section has a uniform cross-section
with uniform linearly elastic isotropic material properties. The
mass density is ρ, Young’s modulus is E , the cross-sectional
area is A and the central area moment of inertia is I. The un-
deformed length of the beam section is l0. Use is made of the
elastic line concept, where all properties are considered to be
concentrated on the elastic line that runs along the centroid of
the cross-section, and the classical Euler-Bernoulli beam theory
is used.

All beam elements that are considered in this paper have two
nodes, which represent the end points of the beam section that is
modelled by the element. The nodes have two Cartesian coordi-
nates, x and y, and an orientation angle, φ, as their coordinates.
If the element e is connected to the nodes p and q, the element
coordinates are (Fig. 1)

xeT � �xp�yp�φp�xq�yq�φq�� (5)
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Figure 1. Planar beam element.

For later reference, we first introduce the nodal position vector
xpT � �xp�yp� and a pair of unit vectors at the node p as

ep
x �

�
cos�φp �φp

0�
sin�φp �φp

0�

�
� ep

y �

�
�sin�φp �φp

0�
cos�φp �φp

0�

�
� (6)

where φp
0 defines the angle with which the beam is connected

to the node; similar quantities are defined for the node q. The
vector connecting the node p to the node q is denoted by Δxe,
Δxe � xq�xp, and its length by l, l2 � Δxe�Δxe.

The generalized deformations of the element are the elonga-
tion of the axis of the beam and two bending modes. The elon-
gation of the beam,

εe1 �
l2� l20

2l0
� εnl�l0�εe2�ε

e
3�� (7)

is given by the Lagrangian strain measure for the change of the
distance between the two nodal points, augmented by a non-
linear contribution of the bending to the elongation of the axis,
εnl, which is different for different variants and depends on the
undeformed length of the beam and the two bending deforma-
tions εe2 and εe3. These bending deformations are defined by

εe2 ��ep
y �Δxe� εe3 � eq

y �Δxe� (8)

The element properties are arrived at by assuming an inter-
polation for the position of the elastic line of the deformed beam.
Conceptually, one can split the beam in two elements, a beam el-
ement to which mass is attached, but which has no stiffness and
can deform freely, and a massless beam element with stiffness.

These two elements are forced to move together, because they
share their nodal points. This splitting of the beam allows us to
assume independent interpolations for the description of the in-
ertia distribution and accelerations at the one hand and for the
deformations at the other hand; these two, however, have to dif-
fer little for small deformations of the beam and are preferably
the same in the linearized case. The gained freedom allows us to
simplify expressions as much as possible.

In the interpolation for the position, the material coordinate
s, measured along the undeformed length of the beam from the
node p with 0� s� l0, and the dimensionless material coordinate
ξ� s�l0 with 0� ξ� 1 are introduced. For the mass description,
the position r of a point along the elastic line with coordinate ξ
is found from an interpolation of the form

r�ξ� � h1�ξ�xp�h2�ξ�l0ep
x �h3�ξ�xq �h4�ξ�l0eq

x � (9)

For rigid-bodymotions, r�ξ� � �1�ξ�xp�ξxq and l0e
p
x � l0e

q
x �

xq � xp, so in order to be able to describe rigid-body motions
exactly, the interpolation functions have to satisfy the relations

h1�h2�h4 � 1�ξ� h2 �h3�h4 � ξ� (10)

By differentiation one finds expressions for the accelerations and
the virtual displacements as

r̈�ξ� � h1�ξ�ẍp �h2�ξ�l0�ep
y φ̈p� ep

x �φ̇p�2�

�h3�ξ�ẍq �h4�ξ�l0�eq
y φ̈q� eq

x�φ̇q�2��
(11)

δr�ξ� � h1�ξ�δxp�h2�ξ�l0ep
yδφp

�h3�ξ�δxq �h4�ξ�l0eq
yδφq�

(12)

Evaluating the inertia term in the virtual work equation,
�ρAl0

� 1
0 δr�ξ��r̈�ξ�dξ, results in an element mass matrix

Me � ρAl0

�
�����

μ11I2 μ12l0e
p
y μ13I2 μ14l0e

q
y

μ21l0e
pT
y μ22l20 μ23l0e

pT
y μ24l20ep

y �e
q
y

μ31I2 μ32l0e
p
y μ33I2 μ34l0e

q
y

μ41l0e
qT
y μ42l20eq

y �e
p
y μ43l0e

qT
y μ44l20

�
				
 � (13)

where I2 is the identity matrix of order two, and the terms that
are quadratic in the velocities,

he � ρAl0

�
����
�μ12l0e

p
x �φ̇p�2�μ14l0e

q
x�φ̇q�2

�μ24l20ep
y �e

q
x�φ̇q�2

�μ32l0e
p
x �φ̇p�2�μ34l0e

q
x�φ̇q�2

�μ42l20eq
y �e

p
x �φ̇p�2

�
			
 � (14)
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where the numerical coefficients μi j are given by the integrals

μi j �
� 1

0
hi�ξ�h j�ξ�dξ� (15)

For the description of the stiffness, an interpolation is used
that differs slightly from the interpolation for the mass descrip-
tion as in Eq. (9). As an auxiliary quantity, a unit vector en per-
pendicular to the straight line connecting the two nodes, eT

n �
��yq�yp�xq�xp��l, is introduced, see Fig. 1. The interpolation
of the position along the beam is chosen as

r�ξ� � �1�ξ�xp�ξxq��h2�ξ�εe2�h4�ξ�εe3�en� (16)

As a measure for the curvature of the beam we take

κ� en�
∂2r
∂s2 �

1

l20
�h��

2ε
e
2�h��

4ε
e
3�� (17)

where primes denote derivatives with respect to ξ. The bend-
ing moment is proportional to this curvature with proportionality
factor EI.

As a measure for the axial strain we take

γ�
1
2
�
∂r
∂s
�
∂r
∂s
�1� �

1

2l20
�l2� l20 ��h�

2ε
e
2�h�

4ε
e
3�

2�� (18)

In order to comply with the definition of the generalized strain
as given in Eq. (7), the axial strain is integrated over the material
length of the element, which yields

εnl �
1

2l0
�β22�εe2�

2�2β24εe2ε
e
3 �β44�εe3�

2�� (19)

where the numerical coefficients βi j are given by the integrals

βi j �

� 1

0
h�

i�ξ�h�

j�ξ�dξ� (20)

Now the average axial strain γ̄� εe1�l0 can be used in the virtual
work of the elastic forces. By this averaging, the element is no
longer purely based on a displacement method, but is a hybrid
element with assumed constant axial force along the element.
The inclusion of non-linear terms in the expression of the first
deformation mode was proposed in (Visser and Besseling, 1969),
and later discussed by Crisfield (Crisfield, 1991). In (Mayo and
Domı́nguez, 1997) a similar procedure in the context of a floating
frame of reference formulation was used.

The element stiffness matrix Se, which relates the general-
ized stresses to the generalized strains as σe � Seεe, now fol-
lows from integrating the virtual work expression for the inter-
nal forces, �l0

� 1
0 �δγ̄EAγ̄� δκEIκ�dξ � �δεeT Seεe, along the

length of the beam as

Se �

�
�������

EA
l0

0 0

0 s22
EI

l30
�s24

EI

l30

0 �s42
EI

l30
s44

EI

l30

�
						

� (21)

where the numerical coefficients si j are given by the integrals

si j �

� 1

0
h��

i �ξ�h
��

j �ξ�dξ� (22)

The interpolation of Eq. (9) can be related to the interpola-
tion in the so-called absolute nodal coordinate formulation (Sha-
bana, 1997), in which the Cartesian position coordinates and the
derivatives of the position with respect to the material coordinate
s at the nodes are taken as nodal coordinates. The interpolation
of Eq. (9) is obtained from the absolute coordinate interpolation
with the same interpolation functions hi by the reduction of co-
ordinates �∂r�∂s��s � 0� � ep

x , �∂r�∂s��s � l0� � eq
x . Two co-

ordinates are saved in the present formulation, at the expense of
a mass matrix that depends on the orientation of the element.
On the other hand, this connection allows a translation of the
elements derived here into an absolute nodal coordinate formu-
lation.

Standard Beam Element

A standard beam element, as has been previously formulated
(Meijaard, 1996), uses cubic interpolation polynomials,

h1 � 1�3ξ2�2ξ3�

h2 � ξ�2ξ2�ξ3�

h3 � 3ξ2�2ξ3�

h4 ��ξ2 �ξ3�

(23)
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These can be seen as constraint modes from a component mode
synthesis perspective. The coefficients become

μi j �
1

420

�
���

156 22 54 �13
22 4 13 �3
54 13 156 �22

�13 �3 �22 4

�
		
 �

β22 �
4
30

� β24 � β42 ��
1
30

� β44 �
4
30

�

s22 � 4� s24 � s42 � 2� s44 � 4�

(24)

This type of element has its use if the main function of the beam
is to transfer loads between its nodes, as in a static analysis with-
out distributed loads on the element. In a dynamic analysis, the
distributed load that is needed to accelerate the mass distributed
along the element is transferred to the beam by statically equiv-
alent nodal forces. Because the element is loaded in a way that
differs from the assumed load for which the interpolation is accu-
rate, a correction to the deflection can be made in a postprocess-
ing stage. This correction is found by calculating the additional
deflection by making use of a linear kineto-elastostatic analysis.
The distributed lateral acceleration along the beam is approxi-
mated by

�1�ξ�ẍp
�en �ξẍq

�en �h2�ξ�ε̈e2�h4�ξ�ε̈e3� (25)

This distribution is obtained from the interpolation (16) by ne-
glecting non-linear terms. This gives an additional lateral deflec-
tion wcen, which is found from

2520EIwc

ρAl40
��21ẍp

�en�3ξ2
�7ξ3�5ξ4

�ξ5�

�21ẍq�en�2ξ2�3ξ3�ξ5�

�ε̈e2�12ξ2�22ξ3�21ξ5�14ξ6�3ξ7�

�ε̈e3��9ξ2�13ξ3�7ξ6�3ξ7��

(26)

Similarly, a correction for the longitudinal displacement can be
made. The distributed longitudinal acceleration can be approxi-
mated by

�1�ξ�ẍp
�et�ξẍq

�et� (27)

where eT
t � �xq�xp�yq�yp��l is a unit vector along the straight

line connecting the two nodes. The additional longitudinal de-
flection ucet is found from

6EAuc

ρAl20
��ẍp�et��2ξ�3ξ2�ξ3�� ẍq�et��ξ�ξ3�� (28)

These corrections are equivalent to the corrections used in a
mode acceleration method (Williams and Jones, 1948; Bis-
plinghoff et al., 1955) and has been used in the context of flexible
multibody system dynamics in (Shabana and Wehage, 1983; Ryu
et al., 1998). Especially for the calculation of a stress distribution
this correction becomes important.

Beam Hinged at Both Ends
In mechanisms it often happens that links are connected to

other parts with hinges at which no moments are transferred or
lumped rotational inertia is present. In the study of the mechan-
ical behaviour of mechanisms, one usually starts with a kine-
matic analysis. After the sizes of the parts are known, a dynamic
analysis based on rigid bodies is made. Stresses and deflections
are calculated in an kineto-elastostatic analysis, where the forces
obtained from the rigid-body analysis are used. As a last step,
a full elastodynamic analysis can be made. The linear kineto-
elastostatic lateral deflection wkesen of a beam that is simply sup-
ported at both ends is found from

360EIwkes

ρAl40
��ẍp�en�8ξ�20ξ3�15ξ4�3ξ5�

�ẍq�en�7ξ�10ξ3�3ξ5��
(29)

This analysis neglects all transient effects in the response and
only gives reliable results if the mechanism is driven at a speed
that is well below its main resonance frequencies.

Now no moments are applied at the hinged ends, on which
the interpolation of the standard beam element is based. As there
is no interaction through the rotations of the nodes with the re-
maining parts of the model, these rotations can be viewed as in-
ternal degrees of freedom of the element, to which some modes
are assigned. In particular, these modes can be chosen in such a
way that some dynamic boundary conditions are approximately
satisfied. Two choices of modes will be made. In the first in-
stance two fixed-interface linear vibration modes are used, as has
been proposed by Hurty (Hurty, 1965) and Craig and Bampton
(Craig and Bampton, 1968). In the second instance lateral deflec-
tion shapes that result from a linearly distributed load as occurs
in a rigid body will be used, with the modes as given by the linear
kineto-elastostatic analysis in Eq. (29). This corresponds to the
first set of load-dependent modes as proposed by Léger (Léger,
1988). It is expected that this second choice yields better results,
especially at low driving speeds, because it takes account of the
way in which the beam is mainly loaded.

Beam with Sinusoidal Modes. If the two first sinu-
soidal modes corresponding to the two first eigenmodes of a sim-
ply supported beam are included, the interpolation functions be-
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come

h1 � 1�ξ� 1
2π sin2πξ�

h2 �
1
2π sinπξ� 1

4π sin2πξ�
h3 � ξ� 1

2π sin2πξ�
h4 �� 1

2π sinπξ� 1
4π sin2πξ�

(30)

The coefficients become

μi j �
1

32π2

�
���

32
3 π

2�20 22 32
6 π

2�20 �10
22 5 10 �3

32
6 π

2�20 10 32
3 π

2�20 �22
�10 �3 �22 5

�
		
 �

β22 �
1
4
� β24 � β42 � 0� β44 �

1
4
�

s22 �
5
8
π2� s24 � s42 �

3
8
π2� s44 �

5
8
π2�

(31)

Beam with Quintic Polynomial Interpolation. If a
quintic polynomial interpolation is used that captures the static
lateral deflection as given in Eq. (29), the interpolation functions
become

h1 � 1�10ξ3�15ξ4�6ξ5�

h2 � ξ�6ξ3�8ξ4�3ξ5�

h3 � 10ξ3�15ξ4�6ξ5�

h4 ��4ξ3�7ξ4�3ξ5�

(32)

The coefficients become

μi j �
1

13860

�
���

5430 933 1500 �453
933 208 453 �133

1500 453 5430 �933
�453 �133 �933 208

�
		
 �

β22 �
16
70

� β24 � β42 ��
1
70

� β44 �
16
70

�

s22 �
192
35

� s24 � s42 �
108
35

� s44 �
192
35

�

(33)

Beam with a Hinged and a Built-in End
For a beam that is hinged at one node and built in at the

other node, only a single internal coordinate is freely available.
To describe the lateral deflection owing to a linearly varying load,
another internal coordinate should be added. In order to keep the
same number of nodal coordinates for each variant of the planar
beam element, we are satisfied just to be able to describe the
deflection caused by a constant lateral load, which is a quartic

Table 1. First two eigenfrequencies of a simply supported beam.

Type of element No of elements k1 k2

standard 1 1.1099 5.0863

standard 2 1.0039 4.4397

sinusoidal 1 1.0000 4.0000

quintic 1 1.0007 4.0325

quartic 2 1.0001 4.0023

polynomial. If it is assumed that the beam is built in at node p
and hinged at node q, the quartic interpolation functions become

h1 � 1�6ξ2�8ξ3�3ξ4�

h2 � ξ�3ξ2�3ξ3�ξ4�

h3 � 6ξ2�8ξ3�3ξ4�

h4 ��3ξ2�5ξ3�2ξ4�

(34)

The coefficients become

μi j �
1

2520

�
���

720 75 288 �111
75 10 51 �19

288 51 1224 �267
�111 �19 �267 76

�
		
 �

β22 �
3
35

� β24 � β42 ��
1
35

� β44 �
12
35

�

s22 �
24
5
� s24 � s42 �

18
5
� s44 �

36
5
�

(35)

Static corrections based on a linear analysis at a postprocess-
ing stage as in Eqs (26) and (28) can be defined for the newly pro-
posed beam elements. These corrections are small for the lateral
deflections and are not included here; furthermore, non-linear
terms can be of the same magnitude. Even for the calculation
of the bending moments these corrections are small. Only the
corrections for the axial displacement and force are significant.

Comparison of Eigenfrequencies
The different variants of the planar beam element are used

in the calculation of the first two linear eigenfrequencies of a
simply supported beam. This beam is modelled by one stan-
dard beam, two equal standard beams, a beam with two sinu-
soidal modes, a beam with quintic polynomial interpolation or
two beams with quartic polynomial interpolation with the built-
in node in the middle. The results are shown in Table 1, which
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time [s]  
0 0.01 0.02 0.03 0.04 0.05 0.06

 deflection 

 

-0.016

-0.008

0.000

0.008

0.016

ω

Figure 2. Non-dimensional deflection of the mid-point of a slider-crank

mechanism with flexible connecting rod. Fully drawn: accurate solution

with four standard elements; dashed: one standard element with correc-

tion; dotted: kineto-elastostatic deflection.

gives the factors ki if the eigenfrequencies are expressed as

ωi � ki
π2

L2

�
EI
ρA

� (36)

where L is the length of the beam. The beam with sinusoidal
interpolation gives exact results, as expected. For a sufficiently
accurate calculation of the first eigenfrequency, at least two stan-
dard beam elements are needed. A single element with a quin-
tic polynomial interpolation yields an even better approximation,
and the second eigenfrequency is obtained within one percent.
Still more accurate results are obtained if two elements with a
quartic polynomial interpolation are used.

APPLICATION EXAMPLES AND COMPARISON

Slider-Crank Mechanism
As a first example, the transient motion of a slider-crank

mechanism with a rigid crank and a flexible connecting rod
(Jonker, 1989; Meijaard, 1991) is considered. The crank has a
length of 0.15 m, and rotates at a constant angular velocity of
150 rad/s. The connecting rod has a length of 0.30 m, a uniform
mass distribution of ρA � 0�2225 kg/m and a flexural rigidity of
EI � 12�72345 Nm2. The slider has a mass of 0.033375 kg. In
the initial position the mechanism is in its top dead centre without
deformations or deformation rates. Effects of gravity or damping
are excluded. As a measured quantity the lateral deflection of the

time [s]  
0 0.01 0.02 0.03 0.04 0.05 0.06

error in deflection 

 

-0.0006

-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

Figure 3. Error in the non-dimensional deflection of the mid-point of a

slider-crank mechanism with flexible connecting rod. Dashed: two stan-

dard elements; dash-dotted: one sinusoidal element; dotted: one quintic

element; fully drawn: two quartic elements.

mid-point of the connecting rod divided by its length is taken,
where the deflection is defined as the distance to the straight line
that connects the two end-points of the rod, the sign of which is
positive if the rod deflects to the same side as it initially moves.

The crank is modelled by a rigid beam element, while the
connecting rod is modelled by one or more beam elements,
where the axial deformation is neglected. The cases in which the
connecting rod is modelled by one, two or four standard beams,
by one beam element with sinusoidal or quintic polynomial inter-
polation or by two beam elements with quartic polynomial inter-
polation are considered. The solution with four standard beam
elements is taken as a reference with which other solutions are
compared.

Figure 2 shows this reference solution together with the
solution obtained with one standard element to which the cor-
rection according to Eq. (26) has been added, and also the
kineto-elastostatic solution according to Eq. (29). The periodic
kineto-elastostatic solution approximates the periodic persistent
solution rather than the transient solution. Because the first
eigenfrequency of the connecting rod is poorly approximated by
one standard beam element, the oscillations around the kineto-
elastostatic solution show a phase error that increases about lin-
early in time.

Figure 3 shows the errors of the other models compared with
the reference solution. The solution obtained with two standard
beam element is the poorest and shows an error amplitude that
grows linearly in time, which means that the error in the approx-
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Figure 4. Bending moment at the mid-point of a slider-crank mechanism

with flexible connecting rod. Fully drawn: accurate solution with four stan-

dard elements with correction; dashed: one standard element with cor-

rection; dotted: kineto-elastostatic solution.

imation of the first eigenfrequency contributes strongly to the er-
ror in deflection. The accuracies obtained with one beam element
with quintic polynomial or sinusoidal interpolation are compara-
ble, although the quintic element gives a better accuracy. The
solution obtained with two beam elements with quartic polyno-
mial interpolation is still more accurate, but the model has two
additional degrees of freedom.

As a second measured quantity, the bending moment at the
mid-point of the connecting rod is considered, which is close to
the point where the maximal bending moments are found. A mo-
ment that bends the beam into a convex shape has a positive sign.
If there is a node at this mid-point, the average bending moment
in the two adjacent elements at their respective ends is used. Fig-
ure 4 shows the solution obtained with four standard beam ele-
ments as a reference, together with the kineto-elastostatic solu-
tion and the solution obtained with one standard beam element.
The relative errors in these last two solutions comparable to those
in the deflection. Figure 5 shows the errors, compared to the ref-
erence solution, for the other models. Also for these models, the
relative errors in the bending moments are are of the same or-
der of magnitude as those in the deflections; only the error in the
results obtained with two quartic elements is larger and is com-
parable to the error obtained with one quintic element.

We can conclude that, for this example, modelling the beam
with one quintic element gives results that are sufficiently accu-
rate for most applications. Although the element with sinusoidal
interpolation gives a better approximation for the eigenfrequen-
cies, the quintic element still gives better results, apparently be-
cause it takes into account how the element is loaded.

time [s]  
0 0.01 0.02 0.03 0.04 0.05 0.06

    error in moment [Nm] 

 

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Figure 5. Error in the bending moment at the mid-point of a slider-crank

mechanism with flexible connecting rod. Dashed: two standard elements;

dash-dotted: one sinusoidal element; dotted: one quintic element; fully

drawn: two quartic elements.

Spin-Up Motion of a Cantilevered Beam
The second example deals with the spin-up motion of a beam

whose base is attached to a rigid shaft with an axis that is perpen-
dicular to that of the beam. The parameters for the system are the
same as those given in (Kim and Haug 1988; Wu and Haug 1988)
and which were used previously in (Meijaard, 1996). The shaft
is given a prescribed angular displacement ψ that accelerates the
beam from a state of rest to a rotation with an angular velocity
ψ̇ � ω � 4 rad/s in the time interval of length T � 15 s, after
which the angular velocity remains constant. If the motion starts
at t � 0, the rotation angle is given by

ψ�
ω
T

�
t2

2
�

T 2

4π2

�
cos

2πt
T

�1

�
�0� t � T ��

ψ� ω
�

t�
1
2
T

�
�t � T ��

(37)

The length of the beam is 8 m, it has a rectangular cross-section
with height of 36.75 mm and width of 1.986 mm, the mate-
rial has a density ρ � 2766�67 kg/m3 and Young’s modulus
E � 68�95 GPa. The measured quantity is the lateral deflection of
the tip of the beam, which is the distance of the tip to the line that
is tangent to the beam at the base, where a lead gives a positive
deflection.

The beam is modelled with one or two standard beam ele-
ments or by a single beam element with quartic polynomial in-
terpolation. The axial deformation of the beam is neglected. The

8 Copyright © 2001 by ASME



time [s]  
0 5 10 15 20 25 30

   deflection  [m]

 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

ψ

Figure 6. Lateral deflection of a cantilevered beam in a spin-up motion.

Fully drawn: accurate solution with two standard elements; dashed: one

standard element; dotted: one quartic element.

solution obtained with two standard elements is taken as a ref-
erence solution. Figure 6 shows the results for the three cases.
Whereas the solution obtained with a single standard beam el-
ement has an error in the maximal deflection of about 6%, the
solution with a single quartic element gives a solution that has an
error of about 1.5%, which is a reasonably good approximation.
The first eigenfrequency of the spinning beam is better approxi-
mated than in the model with the standard beam element.

Of course, an element could have been developed specially
for this problem with a quintic interpolation polynomial which
satisfies the conditions of a zero shear force and moment at the
end and takes account of the special distribution of the normal
force along the beam. We preferred to show the performance of
an element which has a wider ranger of applicability.

CONCLUSIONS
A family of planar beam elements has been developed,

which can make use of the fact that one or both ends are hinged.
It has been shown that the effects of geometric non-linearities
can be properly included. Load-dependent modes rather than
normal vibration modes appear to be the natural choice for com-
ponents that can make large gross motions. In the example of
the slider-crank mechanism with a flexible connecting rod, the
load-dependent modes resulted in more accurate solutions.

By the way in which the planar beam elements were devel-
oped, a generalization seems possible. The extension to spatial
beams and non-uniform beams is straightforward, while the pos-
sibility of deriving superelements for quite general substructures
is a subject of further investigation.
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