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Preface 
 
In the spring of 1998 one of the attendance of the course was Richard Van Der Linde, 
PhD student from Man Machine Systems group. He attendant the course out of interest 
for his PhD subject "designing ballistic walking bipeds". In the course of his research he 
came to the conclusion that the at the time available computer software for Dynamic 
analysis of Multibody systems could not be applied successfully to his problems.  
This course filled that gap and Richard was now able to develop his own code. For me 
his questions on topics like impact and contact problems resulted in new chapters in the 
course. The planned topics on dynamics of flexible multibody systems, the specialty of 
our group here in Delft, had to be postponed.  
 
Richard did not only attend the course but he wrote a nice set of lecture notes. I know 
from experience that this is the best way to understand new material. My advice to all of 
you is to follow Richard's path and make your own notes. These lecture notes can be 
used to verify your own. 
 
Finally I would like to thank Richard for his never lasting enthusiasm during the course. 
It stimulated me enormously. 
 
 
        Rotterdam, March 7, 2000 
         

A. L. Schwab 
 
Preface to the second edition 
 
This second edition is an English translation of the first Dutch version. Minor changes 
have been made to the text and the last example, dynamic biped simulation, is dropped. 
This edition will be used for lecture notes at the European Master in Modelisation of 
Continuum (EMMC) course on Multibody Dynamics, at the University of Technology of 
Ho Chi Minh City (UTH), Vietnam, March 18-22, 2002. 
 

Rotterdam, March 12, 2002 
 
A. L. Schwab 
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Chapter 1  
 

Newton†-Euler ‡ with constraints 
 
† Woolsthorpe 1642 – Kensington 1727 
‡ Basel 1707 - St.Petersburg 1783 
 
We will start this chapter with the derivation of the equations of motion for a system of rigid 
bodies interconnected by joints, the so-called multibody dynamics. We will see that deriving 
the equations of motion by hand is a time consuming task. We will detect a structure in the 
equations. By application of the principle of virtual power and d’Alemberts principle the 
structure becomes clear and we can derive the equations of motion in a systematic way. 
These equations of motion are the basis for the derivation of the impact equations. In the 
last part of this chapter we will pay some attention to methods for the numeric integration of 
the equations of motion. 
 
 

1.1  Free body diagrams 
 
The strategy is: Derivation of the equations of motion by cutting the joints, introduction of 
the joint forces on each body and application of the Newton-Euler equations of motion to 
every individual rigid body. This is undergraduate stuff; see for instance “Dynamics” by 
Meriam & Kraig. Finally we will have to impose the joint constraints on the level of 
acceleration of the bodies. The method is illustrated by an example. 
 
Example 1 
A double pendulum consists of two rigid bodies and two hinges see Figure 1. Note the 
horizontal direction of the gravitational field g. In the right hand side of the Figure the joints 
are cut, the joint forces are introduced. Joint forces are internal forces and always come in 
pairs. This is what Newton's third law; "the action force and the reaction force are equal in 
size and opposite in direction" is about. When we join the bodies again, the joint forces will 
disappear. 
 
 
 
 
 
 
 
  
 
 
 
 

Figure 1 Double pendulum and free body diagrams.  
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The Newton-Euler equations of motion for the individual bodies are: 
 
Body 1: Newton, the sum of the applied forces equals' mass times acceleration in the two 
directions: 
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Body 1: Euler, the sum of the applied moments at the centre of mass equals the moment of 
inertia at the centre of mass times the angular acceleration: 
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Body 2, just like body 1: 
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In these 6 equations of motion we have 10 unknown: the 6 accelerations of the 2 bodies 

),,,,,( 222111 ϕϕ &&&&&&&&&&&& yxyx  and the forces in the joints ),,,( BBAA VHVH . To solve for the 
unknowns we need 4 more equations, the constraints imposed on the system by the joints. 
Body 1 is in A connected by a cylindrical hinge to the fixed world, and body 1 and body 2 
are cylindrically hinged in B. The corresponding constraint equations are: 
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Note that the 6 equations of motion together with the 4 constraint equations result in 6-4=2 
degrees of freedom for the system. 
 
Differentiating twice with respect to time and rearranging: 
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, with the shorthand notation  ii cos cen ,sin s ϕϕ == ii  
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Combination of the equations of motion (vb1.1) and (vb1.2), and the constraint equations 
(vb1.4) leads to the mixed set of Differential and Algebraic Equations, the DAE, as: 
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,  with   
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With given initial conditions, ),,( txx & , these equations (vb1.5) can be solved for the 
accelerations and the joint or constraint forces. Note that BA =T , this fact and a more 
systematic approach to derive the equations of motion is the subject of the next paragraph. 
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1.2 The principle of virtual power and Lagrange multipliers. 
 
We introduce the concept of virtual power: 
 
 fxW  &δδ =  (1) 
 
Proposition 1: 
A mechanical system is in equilibrium if the virtual power is zero for all virtual velocities that satisfy the 
constraints. 
 
Adding the inertia terms by way of the d'Alembert forces, dmxdf in &&−= , to the applied 
forces results in the virtual power equation: 
 
 0  )d(d =−= ∫

V

mxfxW &&&δδ  (2) 

 
We first integrate this virtual power over the volumes of all bodies and since we deal with 
rigid bodies, we can discretize our system by the properties in the centre of mass of the 
individual bodies. This leads to the discrete form of the virtual power equation: 
 
 0)(   xMfx W jijii =−= &&&δδ  (3) 
 
From now on we will use index notation with Einstein summation convention and comma 
donated partial derivatives. This method of notation is explained in Appendix A. 
 
The joint constraints can always be written in a zero delimited form, as in  
 
 ( ) ,0== ikk xDε  (4a) 
 
where k=1..m, with m constraints and i=1..n, with n the total number of coordinates of the 
centre of mass of the rigid bodies. To find the velocities that satisfy the constraints, the 
kinematic admissible velocities, we differentiate the constraints (4a) with respect to time and 
replace the real velocities ix&  with the virtual velocities ix&δ , as in 
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These subsidiary conditions are incorporated in the virtual power balance by the Lagrange 
multipliers (λk), as in 
 
 iikkjijii xD  xMfx &&&& δλδ ,)( =−  (5) 
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The virtual velocities are now arbitrary hence we come up with i equilibrium equations: 
 
 ikkiiji D  xMf ,λ=− &&  (6) 
 
The constraints on the accelerations are found by two times differentiation with respect to 
time of the constraints (4a), as in 
 
 0,,  xxDxD qppqkppk =+ &&&&  (7) 
 
We now can combine (8) and (9) into the following DAE 
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Compare this to (vb1.5) and we see that AT = B, the close relation between constraints and 
constraint forces. 
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Example 2 
 
We will now apply the systematic approach to the double pendulum problem. The 
constraints in vector form are 
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The partial derivatives or jacobian is 
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The convective acceleration terms are: qppqk xxD &&, . 
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These can be compared to the results as in (vb1.5). The Lagrange multipliers λk can be 
interpreted as forces. These forces are dual to the constraints since the product is power. 
This makes the interpretation of the Lagrange multipliers quit easy, if for instance the 
constraint is a horizontal distance between to bodies then the Lagrange multiplier is the 
horizontal force acting on the two bodies. We will look at the equilibrium equations (8) for a 
clear interpretation of the Lagrange multipliers and take the static case, i.e. all velocities and 
accelerations are zero. The equilibrium equations are now 
 
 k, λiki Df =   (vb2.4) 
 
We can write out these equations for the double pendulum in the upright vertical position, 
resulting in 
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Every Langrage multiplier is interpreted by taking a value of one and taking all multipliers 
equal to zero. We will draw the free body diagrams for these four cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. Four force equilibrium systems, the columns of (vb2.5), applied forces drawn, and reaction forces 
dashed. 

 
From these figures we conclude that the columns of Dk,i  represent applied forces on the 
centre of mass of the bodies for which the system is in equilibrium. We can of course 
combine these four force vectors by taking different values for λk. All other force vectors, 
the null space of Dk,i, sets the system in motion.  
 
 
1.3 Active and Passive Elements 
 
Active and passive elements can be added to the system via the virtual power equation. We 
simple add the virtual power of these elements, the product of a force and a virtual velocity, 
on the right-hand side of the virtual power equation. Note that this is the virtual power 
stored in the element. 
 
 vvjijii   xMfx W εδσδδ &&&& =−= )(  (9) 
 
If we have for instance a spring in mind then we can express the elongation in terms of the 
coordinates of the centre of mass of the bodies to find the rate of change as in 
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Substitution of these virtual rates and velocities in the virtual power equation yields 
 
 { } { }0/    0) ( ,, =∀=−− iikiivvijiii xDxDMxfx &&&&& δδσδ  (11) 
 
And with the same reasoning as in 1.2 we come up with the DAE for the system with active 
or passive elements included reading 
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Note the only difference with (8) being the extra term in the right-hand side and note how 
the element force vσ  is transformed via ivD , to forces in the centre of mass of the bodies. 
 
Example 3 
Consider the system as in the figure below. A rigid body with mass m and moment of inertia 
I is hinged to the fixed world in A. In B on the body a spring is connected. The other side of 
the spring is fixed to the world in C.  
The spring has a free length l0 = l and a linear stiffness k. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The elongation of the spring expressed in terms of the coordinates of the centre of mass of 
the body is 
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The partial derivatives are 
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These partial derivatives describe the transformation from spring force σv to body forces fi. 
In the example the coordinates are : x = [ x, y, ϕ ] = [ ½l, 0, 0]. Substitution of these 
coordinates in (vb3.1) and (vb3.2) yields 
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The force in the spring is now kl6

1− , being compression. This force with point of 
application is B is transformed via -Dv, i  to the centre of mass as can be seen from 
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where we have used the angle alpha according to 
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1.4 Impact 
 
The impact equations can easily be derived from the equations of motion. During an impact, 
which we assume takes a very short time, high contact forces will occur. When the time 
interval decreases the forces will increase. However the product of these two, the impulse, 
will be constant. We define the impulse as the limit case 
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t
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Energy will be lost during impact in the contact area. Newton reasoned an impact 
restoration law that relates the relative velocity before and after impact by a material constant 
e as in 
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The amount of dissipated energy is related to e. For e=1 we have energy preservation, a fully 
elastic impact, where for e=0 all impact energy is lost and we speak of a fully inelastic impact. 
We start we the description of the contact condition, again we the D(x) form so we have 
contact for D(x)=0. The relative velocity is now 
 
 iicic xDxD &&

,)( =∆⇒=∆  (15) 
 
Note ∆ being the relative distance normal to the contact surface. Newton impact law now 
reads 
 −+ −= iiciic xD  xD && ,, e  (16) 
 
The + and - denote just before and just after the impact. The equations of motion with the 
incorporation of the contact forces λ, we assume that the system is in contact, can be 
derived as 
 
 icicvivkikjij fDDDxM =+++ λσλ ,,,&&  (17) 
 
with k constraints, v active or passive elements and c simultaneous contact points. 
Integration over the duration of impact and taking the limit case yields 
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where Si  are the applied impact in the centre of mass of the bodies. All other forces that are 
non-impulsive like elastic forces or vicious dampers disappear in the limit case and in this 
way have no contribution to the impact equations.  
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We solve (18) in 3 steps like: 
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, The configuration of the system stays the same during impact. 
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xxMxM &&&& , The change of momentum during impact. 

Substitution of these results in (18) yields the impact equations 
 
 −+ +=++ jijicickikjij xMSDDxM && ρρ ,,  (19) 
 
 
 
 
 
 
and together with the constraints and Newton's impact law leads to the complete impact 
equations 
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from which we can solve the velocities after impact together with the constraint impulses 
and the contact impulses during impact. Note the resemblance with the previous derived 
DAE's! 
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1.5 Numerical Integration 
 
We have shown that the equations of motion of a multibody system can be derived in a 
systematic manner. However, these equations still do not tell us about the position and 
velocity as a function of time. Therefore we will have to integrate these differential 
equations. Due to the complexity of the expressions in the differential equations we usually 
cannot integrate them analytically, we will have to use numerical integration schemes. 
 
The first and most simple scheme that comes in mind is a truncated Tayler expansion for the 
position and the velocity as in 
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One would expect correct results for small values of dt 
 
In the next figure the results are shown for four different values of dt, during a time span of 
0.5 seconds.  
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Fig.  Simulation of a double pendulum by a simple numerical integration scheme for a period of 0.5 seconds 
where the results for four different stepsizes are shown.  
 

dt = 0.1s dt = 0.05s 

dt = 0.02s dt = 0.01s 
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Note 
 
1-The joints in A and B come apart. 
2-These gaps decrease with decreasing step size. 
3-The configuration of the system after 0.5 seconds differs with the step size taken. 
 
 
One would expect that a smaller step size gives more accurate results. However note 1 will 
remain since we do not use the constraint self but twice differentiated with respect to time. 
This phenomenon is called drift. It would be solved if we could incorporate the constraints 
direct on the level of coordinates. These methods will be discussed in chapter 2 and 3.  
The techniques for numerical integration of ordinary differential equations are not the 
subject of this work. They can be found in many standard textbooks. The mastering of these 
techniques is crucial since they can make or break our results, the motion of the multibody 
system. 
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Chapter 2  
 

Lagrange Equations† 
 
† Turijn 1736 – Parijs 1813 
 
Instead of describing the position and orientation of every individual body together with the 
constraints imposed by the joints on these coordinates we will use a minimum set of 
coordinates for which the constraints are inherent fulfilled; the set of independent 
generalized coordinates. 
 
2.1 From force to energy 
 
The staring point for Lagrange was: Energy=Power x time. 
The work, or energy, exerted by a force F on the system is therefore ∫ ⋅ dtxf &  

Application of Newton law of motion xmf &&=∑ yields 
 
 ∫ ∫∫ ∫ =∑⇔=∑ xxmxfxxmxf &&&&&& d  d  dt dt  (1) 
 
For a constant force field, for instance gravity, this yields 
 
 )(m   )( 2

1
2
22

1
12 xxxxf && −=−  (2) 

 
With the concept of potential energy mghV = and Kinetic energy 2

2
1 xmT &= one could 

rewrite Newton's law as 
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x
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x
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dt
d
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


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


∂
∂
&

 (3) 

 
 
 
 
 
 
Note the difference in sign between work of a force in general and gravitational work where 

the force mg is opposite to the displacement h. 
 
We will now introduce the independent generalized coordinates qi and assume that we can 
express the positions and orientations of the centers of mass of all bodies ix  in terms of the 
generalized coordinates qi  as in 
  

 j
j

i
ijii q

q
x

xqxx &&      )(
∂
∂

=⇒=   (4) 

Inertia gravity the rest 
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Multiplying (3) on the left and the right with the partial derivatives from (4) yields 
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The first part in the left hand side can be derived from 
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The partial derivatives for the coordinates and the velocities are equal by definition and the 
time derivative of the partial derivatives equals the partial derivatives of the velocities as in 
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Substitution of (7) in (6) and rearranging yields 
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Substitution of (8) in (5) yields the Lagrange equations  
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where we have introduced the generalized forces i
j

i
j f

q
x

 Q
∂
∂

=  being the energetic duals of 

the generalized coordinates such that Qj jq&  is the mechanical power exerted by this force. 
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Example 1 
 
The first example is a model of a container crane, a pendulum with point mass hanging from 
a horizontal moving support. This system has two degrees of freedom, the horizontal 
displacement x of the cart and the pendulum angle ϕ.   
The generalized coordinates are qj = (x, ϕ) met j=1..2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The coordinates of the point mass are 
 

 
ϕ

ϕ
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and the corresponding velocities 
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With the kinetic energy of the system (only one point mass) 
 
  { }2

B
2

B2
1 yx && +=  mT  (vb1.3) 

 
expressed in the generalized coordinates and velocities as in 
 
 { }22

2
1 cos ϕϕϕ &l&l&& ++=   x2  x mT 2  (vb1.4) 

 
The potential energy of the system is 
 
 ϕcoslmg  V −=  (vb1.5) 
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Plugging in these expressions (vb1.4) and (vb1.5) in the Lagrange equations (9) leads 
automatically to the equations of motion of the system expressed in terms of independent 
generalized coordinates. Moreover with the help of symbolic manipulation like MAPLE in 
MATLAB this can be done easy and almost error free. Here we will illustrate the derivation 
by hand in a step-by-step manner. 
 
First we differentiate the kinetic energy with respect to generalized velocities as in 
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Taking the total differential with respect to time yields 
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The partial derivates of T and V with respect to the generalized coordinates are 
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Substitution and rearranging yields the equations of motion in terms of generalized 
coordinates 
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Note the mass matrix being singular at ϕ=0+kπ, can you explain this in physical terms? 
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2.2 Active and passive elements 
 
Springs and dampers can be looked upon as containers of mechanical energy (for a damper 
the flow of energy is irreversible), or force elements. 
 
The force of a spring is a conservative type of force, as defined by fxV −=∂∂   / . The 
potential energy of a spring is 
  
 2

2
1)( l∆= k    qV jV  (10) 

 
with the stiffness k and the elongation ∆l of the spring. The total potential energy of the 
system is now V = VG + VV with VG the gravitation term. 
 
If the force from the element cannot be derived from a potential we can find the 
contribution to the equations of motion by comparing the virtual power contributions as in 

 jjvv qQ && δεδσ =   (11) 
 
For the relative element displacement, f.i. elongation, we can write 
 
 )( jvv qD=ε  (12) 
 
The virtual velocities are 
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Substitution of these in (11) yields  
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Adding these contributions to the equations of motion results in 
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This second form of adding force elements can also be applied to energy sinks or sources 
like dampers and motors. 
 
Prescribed motion which can not be expressed in terms of a prescribed generalized 
coordinate like qj = qj (t), can be added to the system via a constraint of the  
 
 0),(   t qD ik =  (16) 
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For this last form of prescribed motion we will derive the equations of motion. We apply the 
same techniques as in chapter 1 resulting in the equations of motion 
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with the unknown Lagrange multipliers kλ  for the driving force from the prescribed motion. 
The first term from (17) can be expanded to 
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Differentiation twice of the constraints (16) with respect to time yields 
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Combination of (17) (18) and (19) yields the DAE 
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, with the mass matrix as in 
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Note the resemblance with the system equations as derived in chapter 1. 
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2.3 Impact 
 
To end this chapter we will derive the impact equations from the Lagrange form. There is a 
lot of resemblance with the results from chapter 1. 
Starting point are the Lagrange equations of motion according to (17). In the case of impact 
we have 

1. ∫
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+− →

=
t

t
j

tt
j dt tQS lim , the generalized applied impacts.  
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t itt
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−
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+− lim , the coordinates do not change during the impact. 

 
With these results we can integrate the equations of motion (17) with respect to time from 

−t  to +t and take the limit case +− → tt  resulting in the impact equations 
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with  
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Together with Newton's impact law (chapter1 (16)) in terms of the independent coordinates 
we can write the set of impact equations as 
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This corresponds to (12) from chapter 1. 
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Chapter 3  
 

A combination of methods; TMT 
 
In chapter 1 we have seen that the dynamic behavior of multibody systems can be derived 
from the Newton-Euler equations of motion for a rigid body together with the constraint 
equations describing the ideal joints between the bodies. A major disadvantage of this 
approach is the numerical trouble we run into if we want to numerically integrate these 
DAEs. In chapter 2 we have shown that by choosing independent coordinates we can derive 
via the Lagrange equations the equations of motion in terms of these coordinates. These 
techniques work fine for small models but if we ran into more complex systems the 
symbolic computation of the partial derivatives becomes messy and cumbersome. There is a 
place called Walhalla! By going back to the basic ideas as formulated by Lagrange in his 
monumental work ``Méchanique analytique'' (1788), independent generalized coordinates, 
virtual power and inertia contribution via d'Alembert forces, we have a method to derive the 
equations of motion for a multibody system which is simple, clear, and computational 
efficient. 
 
3.1 Transformation to independent coordinates 
 
According to Newton 
 

0=−∑ jiji xMf &&  (1) 
 
In combination with the virtual velocities yields the virtual power equation  
 

{ } 0  xMfx jijii =−∑ &&&δ  (2) 
 
Assume we can express all coordinates of the center of mass of the bodies ix  in terms of the 
independent generalized coordinates jq  by a kinematic transformation iT  as in 
 

)( jii qTx =  (3) 
 
The corresponding velocities are then 

 

kki,

kki,k

q T

 s velocitie virtual theand    ,q T q  

&&

&&&

δδ =

=
∂
∂

=

i

k

i
i

x

q
T

x
 (4) 

 
Substitution of this result in (2) yields 
  

{ } 0,   xMfqT jijikki =−∑ &&&δ  (5) 
 
The virtual velocities of the generalized coordinates q&δ , are independent so every k equation 
must be zero as in  
 
 { } 0,   xMfT jijiki =−∑ &&  (6) 
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The accelerations of the center of mass of the bodies jx&&  can be found from differentiation, 
twice, of (4) yielding 
 
 qpj,pqj,j qqTq   Tx &&&&&& ll +=  (7) 
 
The second term is usually addressed to as the convective acceleration jg , as in  
 
 qpkpqjkkj qqqTqqg &&& )(  ),( ,=  (8) 
 
Note the transformation from l&&q  to jx&&  is identical to the one from l&q  to jx& , they are 

described by the same Jacobean lj,T . 
Substitution of (7) and (8) in (6) yields the equations of motion in terms of independent 
coordinates 
 

 { }{ } 0  gq TMfT jj,ijii,k =+−∑ ll &&  (9) 
 
In matrix vector notation: 
  
 fqM =&&  (10) 
 
with the reduced mass matrix:  MTTM T=  
the first order kinematic transfer function: jiT ,=T  

and the reduced force vector: [ ]MgfTf T −∑=   
 
 
 
We have gained: The transformation T for every body is simple and the terms in the 
Jacobean lj,T  can easily be derived by symbolic computation. The mass matrix is diagonal 
and all contributions to the equations of motion can be computed numerically on a body-by-
body basis. The resulting equations of motion can be numerically integrated without much 
trouble since the constraints are inherent in the system present via the transformation T. 
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3.2 Active and passive elements 
 
Adding active or passive elements to the system is done in analogue to chapter 1 section 3. 
Add the virtual power of the additional elements to the virtual power balance as in 
 
 { } vjijii xMfx εδσδ &&&& v  =−∑  (11) 
 
With the element force σV and the virtual element deformation rate or virtual relative speed 

vεδ & . The relative displacement of the element is expressed in terms of the independent 
generalize coordinates as in 
 
 iiivvivv xxDxD && )()( ,=⇒= εε  
 
Substitution in (4) yields 
 
 { } 0  )(,, =−−∑ viivjijiki xDxMfT σ&&  (12) 
 
Substitution of (8) in (12) and rearranging for the unknown accelerations yields in matrix 
vector notation 
 
 { } { }σTTT DMgfTqMTT −−∑=&&  (13) 
 
with the first order difference matrix D = Dv,i (xi ) of the additional element. 
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3.3 Impact 
 
The derivation of the impact equations is analogue to the procedure of chapter 1 section 4. 
 
With the additional contact force λc incorporated in the force integral we come up with the 
applied impulse as 
  

 ∫∫
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With the same three steps: 
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Substitution of these results in (14) and incorporation of Newton's impact law (chapter 1, 
section 4 (18)) yields the impact equations 
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Compared to (20) form chapter 1 we note that the reduced mass matrix replaces the mass 
matrix and the only constraints are the contact conditions. 
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Appendix A  
 

Notations 
 

Shorthand notations 
 
cx = cos(x) 
sx = sin(x) 
 
Symbols 
 
f = force vector 
g = gravitational field strength 
g = the vector of convective accelerations 
T = Transformation vector 
x = coordinate vector 
q = generalized independent coordinate vector 
m = mass 
M = mass matrix 
I = rotational inertia 
I = inertia tensor 
C = spring constant 
k = stiffness matrix 
κ = viscous damping constant  
ν = damping matrix 
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Index notation with Einstein summation convention 
 
Matrix vector equations can be written in a compact and clear way by means of the index 
notation with Einstein summation convention. The symbols are no longer bold faced as opposed 
to matrix vector notation. For example 
 
 f = fi met i=1..n. 
 
If in a product two  indices are repated we assume that we have to sum over this index. The 
matrix vector product y=Ax can be written as  
 
 jiji xAy =  with  i=1..n and j=1..m, and summation over the index j. 
 
Partial derivates ar denoted by the comma operator followed by the appropriate index, like in 
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This last example is unambiguous as opposed to an impossible matrix vector notation, since we 
have to deal with three indices. 
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