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ABSTRACT
In this paper, an experimental validation of the lateral dy-

namics of a bicycle running on a treadmill is presented. From
a theoretical point of view, bicycling straight ahead on a tread-
mill with constant belt velocity should be identical to bicycling
on flat level ground with constant forward speed. However, two
major differences remain: first, stiffnesses of the contact of the
tire with the belt compared to the contact on flat level ground;
second, the belt velocity is fixed with respect to the world, irre-
spective of the change in heading of the bicycle on the treadmill.
The admissibility of these two differences is checked by compar-
ing experimental results with numerical simulation results.

The numerical simulations are performed on a three-degree-
of-freedom benchmarked bicycle model [1]. For the validation
we consider the linearized equations of motion for small pertur-
bations of the upright steady forward motion. This model has
been validated experimentally in a previous work [2].

The experimental system consists of an instrumented bicycle
without a rider on a large treadmill. Sensors are present for mea-
suring the roll rate, yaw rate, steering angle, and rear wheel rota-
tion. Measurements are recorded for the case in which the later-
ally perturbed bicycle coasts freely on the treadmill. From these
measured data, eigenvalues are extracted by means of curve fit-
ting. These eigenvalues are then compared with the results from
the linearized equations of motion of the model. As a result,

the model appeared to be accurate within the normal bicycling
speed range, and in particular the transition from stable to unsta-
ble weave motion was very well predicted.

Keywords: Bicycle dynamics, experiments, instrumenta-
tion, treadmill, multibody dynamics, non-holonomic constraints.

1 Introduction
One of the characteristics of a bicycle is that it is highly

unstable at low speed but easy to stabilize at moderate to high
speed. Some bicycles can even show self-stability in the normal
bicycling speed range. After the invention of the bicycle, more
than 100 years ago [3], there has been a sudden revival in the
research on the dynamics and control of a bicycle [4,1,5]. Results
on the open loop stability are well established now [1], but little
is know on how the rider controls the mostly unstable bicycle and
what handling qualities are.

Recently a research program has been started at Delft Uni-
versity of Technology to investigate experimentally rider control
during normal bicycling, model this behaviour and try to define
the concept of handling qualities for bicycles. Instead of doing
the experiments on the open road, there is the wish to execute the
experiments in a more controlled environment. A large tread-
mill is such a controlled environment where one can look at rider
control during normal straight-ahead bicycling or for small lat-
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Figure 1. Large treadmill, courtesy of the faculty of Human Movement
Sciences, Free University of Amsterdam, together with TUDelft instru-
mented bicycle.

eral motions like lane change manoeuvres. But how close is this
to bicycling on the open road?

One of the big problems with bicycling on a treadmill is the
conflicting information which the rider gets. Although he is bicy-
cling with respect to the moving belt he remains stationary with
respect to the surrounding world. This is very confusing in the
beginning. However, we now know from experience that after
some time, riders can easily adapt to this awkward situation.

There remains the question of how good the treadmill mim-
ics bicycling on flat level ground from a purely mechanical point
of view. From a theoretical point of view, bicycling straight
ahead on a treadmill with constant velocity should be identical to
bicycling straight ahead with constant forward speed on flat level
ground. However, there remain two problems. First, the different
stiffness of the contact of the tire with the belt, and second, that
the direction of the forward velocity is fixed with respect to the
world irrespective of the change in heading of the bicycle.

This paper investigates the validity of bicycling on a tread-
mill by comparing the lateral motions of an instrumented rid-
erless bicycle [2] with results from a three-degree-of-freedom
benchmarked bicycle model [1], which has been experimentally
validated in [2]. The experimental system consists of an instru-
mented bicycle without rider on a large treadmill, see Figure 1.
On the bicycle, sensors are present for measuring the roll rate,
yaw rate, steering angle, and rear wheel rotation, see Figure 2.
Trainer wheels prevent the complete fall of the bicycle for unsta-
ble conditions. Measurements are recorded for the case in which
the bicycle coasts freely on the treadmill surface after some small
lateral perturbation which initiates the lateral motion. From these
measured data, eigenvalues are extracted by means of curve fit-

Figure 2. Instrumented bicycle from [2], with all the measurement equip-
ment installed. Sensors are present for measuring the roll rate, yaw rate,
steering angle, and rear wheel rotation. Data are collected via a USB-
connected data acquisition unit on the laptop computer, mounted on the
rear rack.

ting. These eigenvalues are then compared with the results from
the linearized equations of motion of the model.

The organization of the paper is as follows. After this in-
troduction, the treadmill, instrumented bicycle, and linearized
equations of motion are described. Then the test procedure and
a comparison of the experimental and numerical results are pre-
sented and discussed. The paper ends with some conclusions.

2 Treadmill and Instrumented Bicycle
The treadmill, see Figure 1, has a usable belt surface of

3×5 m which can be inclined from -5 to 15 deg, and a regulated
maximum speed of 35 km/h. An emergency stop can stop the belt
within 1 sec. The surface of the treadmill belt is of the ordinary
rubber-like structure with moderate roughness. The treadmill is
manufactured by Forcelink B.V., The Netherlands, and stationed
at the faculty of Human Movement Sciences, Free University of
Amsterdam.

The instrumented bicycle, see Figure 2, used in the test is
fully described in [2]. It is a standard city-bicycle where all
the superfluous parts of the bicycle are removed. Sensors are
present for measuring the roll rate, yaw rate, steering angle and
rear wheel rotation. The data are collected on a laptop computer
mounted on the rear rack. Trainer wheels prevent the complete
fall of the bicycle for unstable conditions.
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Figure 3. The bicycle model: four rigid bodies (rear wheel, rear frame,
front handlebar assembly, front wheel) connected by three revolute joints
(rear hub, steering axis, front hub), together with the coordinate system,
and the degrees of freedom.

3 Linearized equations of motion for the bicycle
model
The bicycle model used is the so-called Whipple [6] model

which recently has been benchmarked [1]. The model, see Fig-
ure 3, consists of four rigid bodies connected by revolute joints.
The contact between the knife-edge wheels and the flat level sur-
face is modelled by holonomic constraints in the normal direc-
tion and by non-holonomic constraints in the longitudinal and
lateral direction. In the absence of a rider (or with a rider rigidly
attached to the rear frame) we assume no-hands operation. The
resulting non-holonomic mechanical model has three velocity
degrees of freedom: forward speed v, lean rate φ̇ and steering
rate δ̇.

For the comparison we consider the linearized equations of
motion for small perturbations of the upright steady forward mo-
tion, which are fully described in [1]. They are expressed in
terms of small changes in the lateral degrees of freedom (the rear
frame roll angle, φ, and the steering angle, δ) from the upright
straight ahead configuration (φ,δ) = (0,0), at a forward speed v,
and have the form

Mq̈+ vC1q̇+[K0 + v2K2]q = f, (1)

where the time-varying variables are q = [φ,δ]T and the lean and
steering torques f = [Tφ,Tδ]T . The coefficients in this equation
are: a constant symmetric mass matrix, M, a damping-like (there
is no real damping) matrix, vC1, which is linear in the forward
speed v, and a stiffness matrix which is the sum of a constant
symmetric part, K0, and a part, v2K2, which is quadratic in the
forward speed. The forces on the right-hand side, f, are the ap-
plied forces which are energetically dual to the degrees of free-
dom q.

The entries in the constant coefficient matrices M,C1,K0,
and K2 can be calculated from a non-minimal set of 25 bicycle

parameters as described in [1]. The procedure and measured val-
ues of these parameters for the instrumented bicycle can be found
in [2]. From these measured parameters the coefficient matrices
of the linearized equations of motion are calculated as:

M =
[

7.98981, 0.89569
0.89569, 0.29857

]
, C1 =

[
0 , 7.17025

−0.59389, 1.32610

]
,

K0 =
[−109.91168, −13.45745
−13.45745, −4.82272

]
, K2 =

[
0 , 11.19798
0 , 1.42200

]
.

(2)
Then, with these coefficient matrices the characteristic equation,

det
(
Mλ2 + vC1λ+K0 + v2K2

)
= 0, (3)

can be formed and the eigenvalues, λ, can be calculated. These
eigenvalues, in the forward speed range of 0 ≤ v ≤ 10 m/s, are
presented by the continuous lines in Figure 6. In principle there
are up to four eigenmodes, where oscillatory eigenmodes come
in pairs. Two are significant and are traditionally called the cap-
size mode and weave mode. The capsize mode corresponds to a
real eigenvalue with eigenvector dominated by lean: when unsta-
ble, the bicycle just falls over like a capsizing ship. The weave
mode is an oscillatory motion in which the bicycle sways about
the headed direction. The third remaining eigenmode is the over-
all stable castering mode which corresponds to a large negative
real eigenvalue with eigenvector dominated by steering.

4 Experimental Procedure and Results
Measurements were recorded for the case in which the later-

ally perturbed bicycle coasted freely on the treadmill. From these
measured data eigenvalues were extracted by means of curve fit-
ting. These eigenvalues were then compared with the results
from the linearized equations of motion of the model. As a result,
the model appeared to be fairly accurate for the normal bicycling
speed range.

4.1 Expected motions
Looking at the eigenvalue plot, Figure 6, the following bi-

cycle motions during the experiments can be expected. At low
speed the motion of the free-coasting laterally-perturbed bicy-
cle will be dominated by the unstable weave motion. Both the
capsize and the castering modes are very stable here and any
initial transient will quickly die out. The time frame for mea-
surement will be short due to the unstable nature of the weave
motion. Then in the stable speed range, again the motion will
be dominated by the oscillatory weave motion. The moderately
stable/unstable capsize motion will only give a small offset in the
lean rate. Here, the measurement window will be large since the
oscillatory weave motion is stable.
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4.2 Test procedure
The experiments were carried out on the large treadmill of

the faculty of Human Movement Sciences at the Free University
of Amsterdam. The 3×5 m usable belt surface has a rubber-like
structure with moderate roughness.

A total of 88 runs were carried out within a belt speed range
of 10 to 30 km/h (2.8 to 8.3 m/s). In each run the bicycle was first
put manually in the vertical equilibrium position and given some
time for the wheels to speed up and get into the steady upright
motion for the given belt speed. The the bicycle was released and
caught before the fall.

To measure the dynamic response of the bicycle at different
speeds and to calculate the corresponding motion eigenvalues,
the bicycle had to show some lateral dynamics. At speeds below
the stable speed range no external excitation was required. Due
to small imperfect or non perfect initial conditions the bicycle
always started to weave about its general heading and this motion
was measured. The time window for measuring was short due to
the unstable motion.

For runs in the stable speed range the bicycle set itself in
an upright position and showed no dynamic behaviour unless it
was given a lateral excitation. This excitation was accomplished
by applying a lateral impulse to the bicycle by simply hitting the
bicycle’s rear frame by hand in the lateral direction at approxi-
mately the insertion of the saddle pillar with the down tube. A
side effect of this perturbation was that after the stable weave
oscillation had died-out, the bicycle was heading in a slightly
different direction and slowly running off the belt.

4.3 Stored data
The frequency of the weave of motion is low, of the order

of 1 Hz (see Figure 6) and therefore only a low sample rate was
needed here. However, the measurement of the forward speed by
means of the 10 magnet ring needed a higher sampling rate. The
first tests were measured with a 100 Hz sample frequency. Then
to ensure no aliasing in the speedometer signal would take, 500
Hz was used. Unfortunately higher sampling frequencies gave a
very erratic steering angle potentiometer signal at the recorder.
The recorded data for each run were stored in a text file.

Every run was also recorded on video. Examples of these
recordings can be found at [7]. This turned out to be essential
for the processing of the run data and helped to identify nonstan-
dard measurements, the quality of the launch, etc. It was thus
possible to compare the recorded data afterwards with the video
images and to extract the relevant data for the calculation of the
eigenvalues from each file.

4.4 Data analysis
For each run the raw data were transferred to Matlab and at

first inspected visually. A plot of the raw data for run 1202 is
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Figure 4. The raw measured data from run 1202. The signals from top
to bottom are: battery voltage, steering angle, lean rate, yaw rate, and
speedometer. The forward speed is around 5.5 m/s, which is clearly within
the stable speed range (see Figure 6). Note the three different motion
regimes: perturb, coasting, and catch & return.
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Figure 5. Least-squares curve fit of the oscillatory stable lean rate time
history (solid smooth curve) to the measured lean rate (ragged line) for
run 1202, together with the measured forward speed (staircase line)
and linear regression of the forward speed (dashed line). Note the
slight decrease in forward speed (from 5.6 to 5.5 m/s) during the mea-
surement. The extracted weave eigenvalue within the time window of
9.4≤ t ≤ 11.0 sec is λweave =−1.32±5.96i 1/s.

shown in Figure 4. In the figure the signals from top to bot-
tom are: battery voltage, steering angle, lean rate, yaw rate,
and speedometer. These graphs were used, together with the
videos of the runs, to locate the time window in which the bicy-
cle coasted freely for each run. Once manually located, a curve
fit of the time histories of the eigenmotions was performed on the
lean rate data to extract the measured eigenvalues, see Figure 5.
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Above a forward speed of 0.1 m/s there is in principle a sum
of three eigenmodes to be fitted: the castering mode, the capsize
mode and the oscillatory weave mode, see Figure 6. The cast-
ering mode is highly damped and will vanish quickly from the
transient signal. The capsize mode is also reasonably damped
below the weave speed and is mildly unstable above the capsize
speed resulting here in a small and slow lean-rate offset. Initially
we tried to fit the sum of the capsize mode and the oscillatory
weave mode to the lean rate data but it turned out that the con-
tribution of the capsize mode was very small. This resulted into
almost random values for the capsize eigenvalue, which can be
explained as follows. Below the weave speed, the capsize mode
is well damped and vanishes quickly, whereas the weave mode
is unstable and will dominate the response. Above the weave
speed, the capsize eigenvalue is small compared to the weave
eigenvalue, in an absolute sense, and again the weave mode will
dominate the response. Therefore only an exponentially damped
or growing oscillatory weave motion was fitted to the data. The
function to be fitted to the measured lean rate was taken as

φ̇ = c1 + edt [c2 cos(ωt)+ c3 sin(ωt)], (4)

with the weave frequency ω = Im(λweave), the weave damping
d = Re(λweave) and the three constants: c1 for the offset, c2 for
the cosine amplitude and c3 for the sine amplitude. Since the
weave frequency and damping appear in a non-linear way in the
function a non-linear least-squares fitting method was used (Mat-
lab’s fminsearch) to extract the eigenvalues.

The speedometer signal, see Figure 4, was an oscillatory
signal with a frequency of ten times the rear wheel rotation fre-
quency. The signal was converted to a forward speed by count-
ing the time between successive zero crossings. As each crossing
represents a 1/20th of a complete rear wheel rotation an average
speed for that portion could be calculated; this is the staircase
line in Figure 5. As the forward speed during the coasting sec-
tion of the measurements slowly decreased due rolling resistance,
a speed range was assigned to the calculated λ’s instead of one
specific speed. This speed range was calculated by looking at the
linear regression of the speed for the chosen time window, see
Figure 5.

Finally, for all runs, in Figure 6, the measured eigenvalues
were plotted on top of the calculated eigenvalues where horizon-
tal bars are used to indicate the forward speed variation during
the measurements.

4.5 Discussion
At speeds above 3 m/s, the predicted weave frequency and

damping by the model were forecasted accurately. The transition
from the unstable to the stable region around the weave speed is
accurately described by the model.
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Figure 6. Measured eigenvalues λ (horizontal bars) and calculated
eigenvalues λ (continuous lines) for the instrumented bicycle on the tread-
mill, from Figures 1 and 2, in the forward speed range of 0 ≤ v ≤ 10
m/s. For the measured values only the weave motion is considered. The
lengths of the horizontal bars indicate the forward speed range during the
measurement. For the calculated values the solid lines correspond to the
real part of the eigenvalues and the dashed line corresponds to the imag-
inary part of the eigenvalues. The zero crossings of the real part of the
eigenvalues are for the weave motion at the weave speed vweave ≈ 4.0
m/s and for the capsize motion at capsize speed vcapsize ≈ 7.9 m/s.
The speed range for asymptotic stability of the instrumented bicycle is
vweave < v < vcapsize.

In the unstable speed region, in particular below 3 m/s, it
turned out to be very difficult to measure the motion of the bicy-
cle. The time window for measurement was very short compared
with the period of the weave motion. Therefore, trying to fit only
a part of a harmonic function to the measured data turned out to
be very difficult and the results showed considerable spread.

The yaw rate signal was of the same quality as the lean rate
signal, but the steering angle signal turned out to be too small
and too erratic, due to noise in the potentiometer, to use.

5 Conclusions
The experimental results show a good agreement with the

results obtained by a linearized analysis on a three-degree-of-
freedom dynamic model of an uncontrolled bicycle. The transi-
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tion from stable to unstable speeds is also well predicted. This
shows that the tire-belt compliance and tire-belt slip, and the
small changes in bicycle heading relative to the belt velocity are
not important for the lateral dynamics of the bicycle on a tread-
mill.

Therefore we conclude that riding a bicycle on a treadmill
with constant belt velocity is dynamically equivalent to riding a
bicycle on flat level ground around the straight ahead direction
with constant speed.
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