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ABSTRACT 
The stability of a rigid body on which two forces are in 
equilibrium can be assessed intuitively. In more complex cases 
this is no longer true. This paper presents a general method to 
assess the stability of complex force systems, based on the 
notion of dynamic equivalence. A resultant force is considered 
dynamically equivalent to a given system of forces acting on a 
rigid body if the contributions to the stability of the body of 
both force systems are equal. It is shown that the dynamically 
equivalent resultant force of two given constant forces applies 
at the intersection of its line of action and the circle put up by 
the application points of the given forces and the intersection of 
their lines of action. The determination of the combined center 
of mass can be considered as a special case of this theorem. 
Two examples are provided that illustrate the significance of the 
proposed method. The first example considers the suspension of 
a body, by springs only, that is statically balanced for rotation 
about a virtual stationary point. The second example treats the 
roll stability of a ship, where the metacentric height is 
determined in a natural way.  

INTRODUCTION 
The stability of a two-force system in equilibrium can be 
assessed intuitively at a single glance. Static equilibrium is 
achieved when the two forces are of equal magnitude, opposite 
sense, and have the same line of action. However, although all 
in equilibrium, the rigid bodies in Fig. 1 have different stability. 
Assuming constant forces (both in terms of magnitude and 
direction), it is readily seen (a more rigorous derivation will 
1

follow) that stable equilibrium results if the forces are pointing 
away from each other (Fig. 1a), whereas unstable equilibrium 
results if the forces are pointing towards each other (Fig. 1b). In 
the borderline case, the two points of application coincide, 
rendering the system in neutral equilibrium (Fig. 1c). Evidently, 
the point of application of the forces on their line of action is of 
vital importance to the stability, even though it does not affect 
the static equilibrium itself. 
 In an n-force system in equilibrium, the judgment of the 
stability is much less obvious. Figure 2 shows an example of a 
rigid body on which three forces are in equilibrium. One 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) (c) 
 
Figure 1. Two-force system in equilibrium acting on a rigid body: (a) 
stable equilibrium, (b) unstable equilibrium, (c) neutral equilibrium.  
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strategy to assess the stability of such systems would be to 
compose forces two by two until a two-force system is obtained, 
the stability of which can then be assessed as above. Clearly, the 
conventional procedure of force composition is not sufficient, 
since it does not yield the point of application of the resultant 
force. Since the conventional procedure is aimed at equilibrium 
(not at stability), it yields in fact the statically equivalent  force 
system: an equivalent force for which the point of application 
on the line of action is not relevant. Therefore, in order to find 
the equivalent stability, a procedure is required to compose 
forces in a dynamically equivalent way, i.e. in such a way that 
the stability contribution of the resultant force is equal to the 
stability contribution of the two original forces. This implies 
that in addition to the magnitude and line of action of the 
resultant force, also the point of application is to be found. 
 This paper proposes a procedure for the determination of 
the dynamically equivalent resultant force system, for any given 
force system. The treatise will be limited to the planar case of 
rigid body motion. The study will not be limited to the 
judgment of stability of static equilibrium. It will be shown that 
the proposed procedure for the determination of dynamically 
equivalent forces is valid for the contribution of forces to any 
state of motion. 

STATIC EQUIVALENCE 
This section will use the Newton-Euler equations of motion to 
investigate the contribution of forces to the nominal state of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 A three-force system acting on a rigid body. Static 
equilibrium determines the magnitude and line of action of the third 
force, but the stability is not readily assessed.  
 
 

 2 
motion of a rigid body. In matrix form, the equations of motion 
for a rigid body under the influence of n external forces read:  
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where m is the mass of the rigid body, 2E  is the 2x2 identity 
matrix, cI  is the mass moment of inertia about the center of 
mass C, cr��  is the acceleration of the center of mass, ���  is the 
rotational acceleration of the rigid body, iF  are external forces 
acting on the body, while the summation runs from i=1 
through n, where n is the number of forces. The vector notation 
is as follows. The vector ir  is the position vector of the point of 
application Pi of the force iF  relative to the inertial reference 
frame, whereas ci /r  denotes a position vector relative to point C 
of the rigid body, both expressed in the global coordinate 
system. The subscript T denotes transposition, and the matrix A, 
which reads:  

 �
�

�
�
�

� �
�

01
10

A        (2) 

is in fact the rotation matrix for �/2 radians and is used to effect 
the planar form of the vector multiplication ici Fr �/ . It is noted 
that the summation convention is not used, but individual 
variables are considered. 
 Suppose that iF�  includes 1F  and 2F  among other forces, 
and that i

T
ci FAr )( /�  includes their moment contributions 

1/1 )( FAr T
c  and 2/2 )( FAr T

c , among other terms. Then a single 
force rF  has the same contribution to the nominal state of 
motion, as represented by Eq. 1, under the following conditions: 

 21 FFF ��r         (3) 

 � � � � � � 2/21/1/ FArFArFAr T
c

T
cr

T
cr ��   (4) 

These equations form the basis for the well-known conditions 
for static force composition. The resulting transformed force 
systems, often called "equivalent force systems" (e.g. [1]), are 
in fact statically equivalent force systems. Moreover, the 
contribution of the force rF  thus found is equivalent to the 
contribution of the forces 1F  and 2F  together, not only to the 
state of static equilibrium but also to any nominal state of 
motion. Furthermore, it can be shown that the conditions 3 
and 4 are valid with respect to any point of the rigid body (i.e. 
point C need not be the center of mass).  

DYNAMIC EQUIVALENCE 
The vector equation Eq. 3 determines the magnitude and 
direction of the resultant force rF , whereas the line of action 
of rF  is determined by the scalar equation Eq. 4. However, 
Eqs. 3 and 4 do not determine the point of application of the 
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force rF . This is not important for the contribution to the 
nominal state, but for the stability of the nominal state, the point 
of application of a force is essential. Therefore, it is important 
that static equivalence is well distinguished from dynamic 
equivalence. In this paper, a resultant force will be considered 
dynamically equivalent to a system of forces acting on a rigid 
body if the contributions to the stability of the body of the 
resultant force and the original system of forces are equal. 
 Stability essentially is a dynamic phenomenon. Therefore, 
small variations about the nominal state of the body will be 
considered to investigate the stability of the nominal state of a 
rigid body in the planar case. The equations of motion for any 
nominal state of motion were given in Eq. 1. Expansion of these 
(for first order variations), subtraction of the nominal state, and 
rearranging of terms, yields the equations for the variations 
about the nominal state: 

 0���� xKxM ��         (5) 

where the mass matrix is 
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and where the tangent stiffness matrix is 

 
� � � �

� � � � �
�
�

�

�
�
�

�

����

����
	

�

�

,/,/

,,

)()( FArFAr

FF
K

r

r
T

cii
T

ci

ii

c

c  (7) 

and where TT
c ][ �rx � . A subscript with comma is used to 

denote partial derivatives, e.g. �� ��� /, FF . The terms in the 
matrix K show that the forces and their moment contributions 
must be differentiated with respect to the position and 
orientation of the rigid body, cr  and � , respectively, implying 
that the character of these forces affects the result. In the 
following sections, two kinds of forces will be addressed: 
constant forces and central linear forces. 
 
Constant Forces 
For constant forces, i.e. forces due to a homogenous force field, 
hence with invariant magnitude and direction, most of the 
elements in the tangent stiffness matrix K vanish. The only 
remaining term is �,/ ))(( i

T
ci FAr�� , representing the change 

in moments due to a small rotation. To elaborate this term, a 
local coordinate system is fixed to the body at point C such 
that ciccici // rRrrrr ����� , where 

 �
�

�
�
�

� �
�

��

��

cossin
sincos

R      (8) 

is the rotation matrix describing the transformation from the 
body fixed coordinates r �  into the space fixed coordinates r  as 
in 
 3 
 rRr ��          (9) 

The rotation matrix is an orthogonal matrix (e.g. [2]), which 
means that 

 2ERR �

T         (10) 

A direct result from this orthonormality is that the transposed 
of R equals the inverse, as in 1�

� RRT . Furthermore, if we 
differentiate the identities in Eq. 10 with respect to �  we find: 

 0,, ��
TT
�� RRRR   or  0)( ,, ��

TTT RRRR ��  (11) 

Indeed, the matrix TRR �,  is a skew symmetric matrix. 
Moreover, the previously presented matrix A is in fact defined 
by: 
 TRRA �,�         (12) 

Returning to the term �,/ ))(( i
T

ci FAr��  of the stiffness matrix, 
we can now elaborate this term as follows:   
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T
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T

i // rFAArF ����     (13) 

where the equality 2EAA ��  is used. Consequently, the 
stiffness matrix of a set of constant forces iF  acting on a rigid 
body reduces to: 
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This expression shows that the contribution to the stability of a 
constant force is characterized by the scalar product of the force 
vector and the position vector of its point of application.  
 The stability of the two-constant-force systems in Fig. 1 can 
now be investigated more rigorously. Evaluation of the stiffness 
maxtrix yields for the ci

T
i /rF�  term:  

 � � Fdcc
T

c
T

c
T

ci
T

i ������� /2/11/22/11/ rrFrFrFrF  (15) 

where 1F�F  and � �ccd /2/1 rr �� , i.e. the distance between 
points 1P  and 2P . Thus, we find values of Fd , Fd�  and zero 
for the systems in Figs. 1a, 1b, and 1c, respectively. Since these 
terms are in fact the powers of the exponential solution to the 
linear differential equation Eq. 5, it can be concluded that the 
system in Figs. 1a, 1b, and 1c are stable, unstable, and neutrally 
stable, respectively, for small rotational disturbances. Note that 
all of these systems are neutrally stable for small displacements.  
 More interestingly, the tangent stiffness matrix K of Eq. 14 
can be used to find the force rF  that is dynamically equivalent 
to two constant forces 1F  and 2F , by demanding that their 
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contributions to the tangent stiffness matrix K must be equal. 
This notion leads to the following equation: 

 c
T

c
T

cr
T
r /22/11/ rFrFrF ��     (16) 

 Thus an equation of scalar products is found, which, 
together with the equation of force vectors (Eqs. 3) and the 
equation of vector products (Eq. 4), uniquely defines the 
application point of the resultant force rF  yielding the same 
stability contribution, when constant forces are assumed. The 
application point found in this manner will be called the 
dynamically equivalent application point (DEP) of the resultant 
force. Equation 16 will be called the stability equation for the 
case of constant forces. As is true for the force and moment 
equations (Eqs. 3 and 4, respectively), it can be shown that the 
stability equation is valid for any point C on the rigid body. 

 
DEP of two constant parallel forces 
To investigate the implications of the stability equation, the 
special case of two parallel constant forces is investigated first. 
Consider for example two gravity forces Tgm ]0[ 11 ��F  and 

Tgm ]0[ 22 ��F  acting on a rigid body, as in Fig. 3a. 
Substitution of these expressions into Eqs. 3, 4, and 16, yields 
after elaboration: 
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Thus, the application point ),( // crycrxr rrP �  of the 
dynamically equivalent force is found to be located on the line 
connecting 1P  and 2P , in such a way that 1221 // mmPPPP rr �  
as shown in Fig. 3b. This result corresponds to the well-known 
procedure of finding the combined center of mass of two 
particles, and demonstrates that the above derivation indeed 
yields equivalent dynamics. In fact, this result can be identified 
as a particular case of the proposed procedure. 
 
DEP of two constant forces 
The more general case of two constant forces of arbitrary 
direction (Fig. 4a) is considered next. The line of action of the 
statically equivalent force is known, and Eq. 16 is used to find 
its point of application. Graphical inspection of this equation 
reveals a remarkable phenomenon. The DEP is located on the 
circle defined by the application points of the original forces 
and the intersection of their lines of action, as is shown in 
Fig. 4b. Assuming that this is true, it will be shown that Eq. 16 
results. First, it is realized that if 21 FFF ��r , then the 
projection of rF  on any straight line is equal to the summation 
 4 
of the projections of the forces 1F  and 2F  on the same line. If 
the diameter of the circle through point T is selected, the 
following expression results for the projections of the forces on 
this line (Fig. 4c): 

 2211 coscoscos ��� DFDFDF rr ��  (19) 

where iiF F� , and where each term is multiplied by the 
diameter D. When T is selected as point C, the terms iD �cos  
are equal to TiTir // r� . Furthermore, as the vectors Ti /r  
and iF  are collinear, the terms ii DF �cos  evolve into Ti

T
i /rF . 

Since 21 FFF ��r , the treatise is valid with respect to any 
point of the rigid body. Consequently, Eq. 19 is equivalent to 

 
 
 
 
 
 
 
 
 
 
  
  
 
 (a) 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
 
 (b) 
 
 
 
 
 
Figure 3. Two parallel constant forces acting on a rigid body: (a) 
given situation, (b) dynamic equivalent force. This example 
demonstrates the analogy with the determination of the combined 
center of mass of two particles.  
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Eq. 16, which concludes the proof. Thus, the circle construction 
is a convenient way of finding the DEP of two given constant 
forces. 
 
Stability of a three-force system in equilibrium 
In the special case of a three-force system in equilibrium, the 
assessment of the stability now becomes straightforward and 
convenient by using the circle construction of Fig. 4. Figure 5 
shows three cases of a rigid body which is in equilibrium under 
influence of the forces 1F , 2F  and rF . The body in Fig. 5a is 
in stable equilibrium, since replacing forces 1F  and 2F  by their 
dynamically equivalent resultant rF  (not shown) yields a 
system similar to Fig. 1a. Similarly, the system in Fig. 5b is in 
unstable equilibrium, whereas the system in Fig. 5c is in neutral 
equilibrium. Note that it can now be concluded that the body in 
Fig. 2 is in stable equilibrium, simply by constructing the circle.  
 
Central linear forces 
This section deals with forces generated by a central linear 
force field. One special type of central linear forces consists of 
forces generated by zero-free-length springs [3], which are of 
great benefit in the design of mechanisms in neutral 
equilibrium [4]. Due to the character of these forces, the tangent 
stiffness matrix K will contain more non-zero entries than in the 
case of constant forces. This section will derive the conditions 
for the dynamically equivalent force of two central linear 
forces, or, in particular, two zero-free-length springs.  
 The central linear force generated by a zero-free-length 
spring can be expressed as: 

 � � � �ciciiiiii kk /rRraraF ������   (20) 

where ik  is the spring stiffness; ia  is the position vector of the 
fixed end of the spring (the origin of the central linear force 
field), and ir  is the position vector of the moving end of the 
spring. The moment contribution of such a force with respect to 
an arbitrary point C of the body is: 

 � � � � ci
T

ciciici
T
ii

T
ci k /,//,/ rRrRrarRFFAr ������� ��  

           (21) 

From Eqs. 20 and 21, the contributions due to this force to the 
elements of the stiffness matrix K (Eq. 5) can be derived: 

 � � 2, EF r ii k
c
��        (22) 

 � � ciiciiciii kkk ///,, ArrARrRF ������
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 (23) 
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 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
  (c) 
 
 
Figure 4 Two constant forces of arbitrary direction acting on a 
rigid body: (a) given situation and statically equivalent force that may 
apply anywhere on its line of action, (b) dynamically equivalent point 
of application, as determined by the proposed circle construction, (c) 
proof of the circle construction. 
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Figure 5. Systems of three constant forces in equilibrium acting on a rigid body: (a) stable equilibrium, (b) unstable equilibrium, (c) neutral 
equilibrium.  
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where the equalities ARR ��, , 2,, ERR ���
T , cicí // rr �� , 

and RR ����, , are used. Thus, the tangent stiffness matrix K 
for central linear forces evolves into:  
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As compared to the constant-force stiffness matrix (Eq. 14), the 
following differences are apparent. Additional terms ciik /Ar  
and � �T

ciik /Ar  are present as the off-diagonal elements. 
Consequently, the system is no longer indifferent with respect to 
arbitrary displacements. Pure translation is associated with a 
stiffness ik  due to the term 2Eik . Furthermore, it is remarkable 
that the lower right term is not replaced by a completely 
different term but is expanded with the term ci

T
ciik // rr  

(compare Eq. 13 with Eq. 25), resulting 
in ci

T
ciici

T
ici

T
cii kk ///// rarFrr �� . 

 If now two central linear forces are to be replaced by a 
single equivalent one, the contribution to the stiffness matrix K 
due to the equivalent central linear force must be equal to the 
contribution due to the two original ones. Considering Eqs. 22 
through 25 respectively, this leads to the following conditions 
for equal stability (stability equations): 

 21 kkkr ��         (27) 

 cccrr kkk /22/11/ ArArAr ��     (28) 

 �� cr
T
rcr

T
crrk /// rFrr  
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c
T

c kk /22/2/22/11/1/11 rFrrrFrr ���  (29) 

Thus, when replacing two central linear forces by one, a total of 
seven equations are found: the vector equations Eq. 3 
and Eq. 28, and the scalar equations Eq. 4, Eq. 27, and Eq. 29, 
which are to be solved for five unknowns (one scalar, rk , and 
two vectors, rr  and ra ). Consequently, no solutions are found 
in general. This leads to the conclusion that two central linear 
forces cannot generally be substituted by a single one in a 
dynamically equivalent manner. However, by imposing 
constraints on the system, solutions for at least two special cases 
are possible. The following section will give the first special 
case, the second one will be treated in the Examples section. 
 
Special Case 1: Common Attachment 
A first special case is possible when the zero-free-length springs 
are attached to the rigid body at the same point (Fig. 6). Then 

cc /2/1 rr �  which, substituted in Eqs. 3 and 4, leads to 
cccr /2/1/ rrr �� . Together with Eq. 27, this immediately 

satisfies Eq. 28, while Eq. 29 now becomes: 

 � � ��� cr
T
rcr

T
crkk ///21 rFrr  

   cr
T

cr
T

crcr
T

cr
T

cr kk /2//2/1//1 rFrrrFrr ���  (30) 

The cr
T

cr // rr  terms cancel out, which gives after rearranging: 

 � �� � 0/221121 ���� cr
TTT

r kkkk raaa   (31) 

This should be valid for any crr / , and therefore, introducing 
the unit vector ae  and using the relations aaeaa �� 21  and 

aaa �� 21  (see Fig. 6), Eq. 25 evolves into: 
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 From this result it is seen that ra  traces the line A1A2 as the 
stiffnesses k1 and k2 vary. It is also seen that )/( 2112 kkaka ��  
and )/( 2121 kkaka �� . Thus, the relation 2211 akak �  defines 
the location of point Ar on the line A1A2. 
 So, two zero-free-length springs, k1 and k2, each attached 
with one end to a first rigid body and with the other end to a 
second rigid body, can be composed into a single zero-free-
length spring kr in a dynamically equivalent way for any relative 
movement of the rigid bodies, under the following conditions: 
Firstly, rk  must equal 21 kk �  (due to Eq. 27), secondly, the 
free ends of the springs must be attached to the same point of 
application rP , so cccr /2/1/ rrr ��  (assumed earlier); and 
thirdly, the fixed end Ar of the dynamically equivalent zero-free-
length spring must be located on the line connecting A1 and A2, 
so that 2211 akak �  (resulting from Eq. 32). Inversely, these 
equations can be used to resolve a single spring into two 
springs, where it is noted that this does not give a unique 
solution. 
 
Potential Forces 
The treatise above can be generalized when the applied forces 
can be derived from a potential function, i.e. when they are 
conservative. This is especially useful when the stability is to be 
assessed in cases where the original forces and their points of 
attachment are not easy to identify. Examples are distributed 
loads, such as hydrostatic pressure.  

In the case of a rigid body, only the potential of the external 
forces is to be concerned, so the equations of motion can be 
written as follows: 
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where � ��,cVV r�  is the potential energy of the body. The 
variations about the nominal state of motion can be found by 
extending Eq. 33 and subtracting the nominal state, which 
results in: 
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This result is completely equivalent with Eq. 5. Depending 
on the situation, either of these may be more convenient. 

EXAMPLES 
This section will provide two examples. The first example is in 
fact the second special solution to finding a dynamic equivalent 
of two central linear forces. The second one demonstrates the 
 7 
convenient use of the potential using the example of the 
stability of a floating vessel. 
 
The Balanced Broom 
In addition to the common attachment, a second special case of 
a dynamical equivalent of two central linear forces is found 
when the motion is restricted to rotation (about a fixed point) 
only, and the two central linear forces are not replaced by a 
resultant central linear force but by a constant force. Under 
these distinct conditions, a solution can be found as follows. 
Due to the restriction to rotation, Eqs. 28 do not apply; and due 
to the replacement of two central linear forces with a constant 
force, dynamic equivalence is characterized by: 

 c
T

c
T

cc
T

c
T

ccr
T
r kk /22/2/22/11/1/11/ rFrrrFrrrF ����  (35) 

where the left side corresponds to the expression for constant 
forces. Now, together with the Eqs. 3 and 4, a total of four 
equations (one vector equation and two scalar equations) are 
found to solve for four unknowns (two vectors, rF  and cr /r ).  
 The physical interpretation of this solution is still an open 
question, however an example confirming this phenomenon is 
present in the Balanced Broom (a.k.a. Floating Suspension [5]). 
This is a statically balanced mechanism consisting of one link 
with a mass at its end, suspended by two zero-free-length 
springs in such a way that a stationary pivot is obtained (Fig. 7). 
Static balance can be proved by using the potential. The total 
potential is the summation of the potentials of the springs and of 
the mass (with respect to O, see Fig. 7): 

 � � � ������� cc
T

cckV /11/1112
1 rrarra  

  � � � ������ cc
T

cck /22/2222
1 rrarra  

 
 
 
 
 
 
 
 
 
 
      
 
 
 
Figure 6. Two central linear forces, acting at the same point of a rigid 
body, can be composed into a single dynamically equivalent one.  
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  � � z
T

cmcmg err /�      (36) 

where ci /r  runs from point C to the points where the moving 
spring ends attach to the link. The equilibrium position can be 
found from the equilibrium of forces:  

 � � � � 0/2/22/1/11, ������� zcccc mgkkV c erarar  (37) 

 � �� � � � 01 2211 ��������� zrzrz mgrpakrapk eeeee  
           (38) 

where the vector � � cici /ara ��  is the vector from point C to 
the fixed spring attachment point Ai, and where r1 and r2 are 
defined according to rc r er 1/1 �  and rc r er 2/2 �� , respectively. 
This results in the following two conditions that are valid for 
any re  or, equivalently, for any φ:   

 2211 rkrk �         (39) 

 � � 01 21 ����� mgpakapk     (40) 

In case of equal springs kkk �� 21 , it is found from Eq. 39 
that rrr �� 21 , and from Eq. 40 that kamgp 2/2

1
��  or 

��� paaz 2/  kmg 2/ . This expression is independent of the 
orientation of the link, which implies that the link has a 
stationary center of rotation, even though no physical joint is 
present. Thus, the link is restricted to rotation about a virtual 
pivot at C. 
 Next, the rotation is investigated by differentiating the 
potential with respect to �: 

 � � � ������� cc
T

ckV /11/1,1, rRrarR
��

  (41) 

  � � � � � � z
T

cmcc
T

c mgk erRrRrarR /,/22/2,2 ������
��

 

This equation can be simplified because ��� ci
T

ci //, )( rRrR �  
��� ci

TT
ci /,/ rRRr �  0// ���� ci

T
ci rAr . In addition, making use 

of Fig. 7, it is observed that zc ap era )1(1 ���  and 
zc paera ���2 . Furthermore, if �e  is used as unit vector 

perpendicular to re , then �� erR cc r /1/1, ��  and 
�� erR cc r /2/2, ��� . Thus, Eq. 41 reduces to: 

 � �� � z
T

mcc mgrparkaprkV ee
��

���� /22/11, 1  (42) 

where cmmr /r� . Using Eq. 39, krrkrk cc �� /22/11 , it is seen 
that this expression equals zero for any orientation if: 

 0�� mmgrkra    or   mgkarrm // �  (43) 

It is thus shown that the broom is statically balanced for rotation 
by two zero-free-length springs, while at point C a stationary 
center of rotation with no support force is obtained! 
 A solution to Eq. 35 is now possible when it is assumed 
that rF  is parallel to the line connecting the fixed ends of the 
 8 
springs and its point of application is located on the line 
connecting the moving ends of the springs. Hence, arr F eF �  
and rrcr r er �/ . Under these conditions, Eq. 35 becomes: 

 r
T
ar

T
ar

T
arr rakrakrF eeeeee 222111 ��   (44) 

A solution is found for any re  and therefore for any angle φ 
when: 

 222111 rakrakrF rr ��      (45) 

This result confirms that one solution for the dynamically 
equivalent force of the two ideal spring forces is a constant 
force of magnitude rF  and directed along ae , acting on the 
lever at point P, located along the extension of 21PP  at a 
distance rr  from point C. In particular, this treatise proofs the 
neutral stability for rotation of the spring-suspended link 
when ae  is set vertical and a gravity force gF mr � , equal and 
opposite to the resultant of the spring forces, is applied at 
point P, where cmr rr /� .  
 
Roll stability of a ship 
The metacenter of a ship is an example of a dynamically 
equivalent application point of a resultant force, i.e. the 
hydrostatic or buoyancy force (e.g. [6]). The position of the 
metacenter with respect to the center of gravity of the ship, the 

 
 
 
 
 
 
 
 
 
 
      
 
 
 
 
 
 
Figure 7. The Balanced Broom, demonstrating the fact that two 
central linear forces can be composed in a single dynamically 
equivalent constant force for a rotating body. The name for this 
mechanism is due to a confirmation experiment performed by Prof. 
Andy Ruina during a visit to our laboratory. An available broom was 
used by way of beam, while medical instrument covers out of latex 
served as approximate zero-free-length springs, with amazing result.  
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metacentric height, determines the stability of the roll motion of 
a ship. The motion is stable if the metacenter is above the center 
of gravity, in which case the metacentric height is taken 
positive.  
 If we draw the free body diagram of a ship of rectangular 
cross section in the equilibrium position (Fig. 8a), that is at zero 
roll angle, it is clear that the resulting hydrostatic force must act 
on the center line of the cross section of the ship. Yet, at a 
glance, it is not obvious were the point of application of this 
resultant is located in order to be dynamically equivalent with 
the hydrostatic forces. A first, incorrect guess would be the 
centre of gravity of the displaced water volume, also known as 
the centre of buoyancy. Determining the DEP for the 
hydrostatic forces is not so easy since, for a rotated ship, these 
forces change both in direction as well as in magnitude. 
Therefore a direct analysis as presented in Eq. 5 is rather 
cumbersome. A much easier approach is making use of the 
potential function for this conservative force field and 
subsequently take derivatives as proposed in Eqs. 33 and 34 to 
obtain the dynamically equivalent force system.  
 Consider the ship in a displaced position (Fig. 8b). The 
potential function for the hydrostatic forces is minus the 
potential of the displaced water volume which is equal to the 
first moment of mass distribution with respect to the water line 
times the gravitational constant g. We can divide the immerged 
cross sectional area of the ship into two parts, a parallelogram 
A1 and a triangle A2 as given by 

 �
�

�
�
�

�
��	 ��

�
sin

2
cos

cos1
bwcbA   (46) 

 �
�

�
�
�

�
� �

�
sin

2cos2
bbA      (47) 

where b is the width of the ship, c the distance of the center of 
gravity with respect to the bottom of the ship, and w the 
position of the center of gravity with respect to the waterline. 
With the distance of the centers of mass with respect to the 
waterline of the two parts, respectively, as given by  

 �
�

�
�
�

�
��	 �� sin

2
cos

2
1

1
bwcw    (48) 

 �� sin
6

cos2
bwcw ���     (49) 

the total potential of the hydrostatic forces now becomes 

 � �2211 wAwAgV �� ��      (50) 

where � is the length of the ship and ��the density of water. The 
metacentric height of a ship is defined in the equilibrium 
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position. In this position the roll angle will be zero due to 
symmetry. The submerged height h of the ship follows from the 
total weight of the ship G being equal to the buoyancy, as in 

 � �bhgG �� ��        (51) 

Note that the buoyancy also can be found as the first partial 
derivative of the hydrostatic potential V with respect to vertical 
displacement w. With this height h, the displacement of the 
center of gravity w at equilibrium is now 

 chw ��         (52) 

 
 
 
 
 
 
  
 (a) 
 
 
 
 
 
 
 
 
  
 
 (b) 
 
 
 
 
 
 
 
 
  
  
 
 (c) 
 
 
 
 
Figure 8. Ship with rectangular cross-section: (a) stability is not 
easily assessed based on the physical force system, (b) inclined vessel, 
(c) resulting dynamically equivalent force configuration reveals the 
state of stability at a glance.  
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The dynamically equivalent force system for the hydrostatic 
forces follows directly from the second order partial derivative 
of the hydrostatic potential V with respect to the roll angle � 
(Eq. 34� resulting in 

 � �
�
�

�

�

�
�

�

�
���

�

�
�
�

�
�	 chh

h
bbhgV

2
1

12
1 2

, ����  (53) 

If we compare this to the result for a constant force, i.e. the 
term Fd in Eq. 15, we conclude that we can replace the 
resulting hydrostatic forces by a constant force  

 � �bhgF �� ��        (54) 

acting at a distance d from the centre of gravity, where the 
distance d is in this case 

 chh
h
bd ���
�

�
�
�

�
	

2
1

12
1 2

     (55) 

This distance d is the so-called metacentric height of the ship. If 
we compare this to the result from literature (e.g. [6]) where the 
metacentric height GM is given by 

 BG
Vol
IGM oo

��       (56) 

where Ioo is the area moment of inertia of the horizontal 
waterline area about the longitudinal axis of the ship, Vol is the 
displaced water volume, and BG the distance from the centre of 
buoyancy to the centre of gravity of the ship, we find 

 �
�

�
�
�

�
���

212
1 3 hc

bh
bGM
�

�      (57) 

This is in complete accordance with Eq. 49. Note that the DEP 
of the hydrostatic forces is not located at the center of buoyancy 
but at a distance hb 122  right above this point (Fig. 8c). 
 
Stability of a shoe box 
A clear example of the difference between the center of 
bouyancy B and the metacenter M is present in the case of a 
floating shoe box (Fig. 9a). We know from experience that this 
is a stable configuration. Yet, in most cases, the center of 
gravity G will be above the center of buoyancy B which gives 
the impression of an unstable system. Substituting the 
dimensions as presented in Fig. 9a into Eq. 55 we calculate 

 hGM 2
3

�   and  hBM 3�   (58) 

Indeed, a very stable configuration! In conclusion, Fig. 9b 
shows the physical force system, while Fig. 9c shows the 
dynamically equivalent two-force system. 
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CONCLUSION 
Unlike two-force systems, more complex force systems do not 
allow the assessment of their stability by inspection. This paper 
presented a general method to determine the stability of 
complex force systems, based on the notion of dynamic 
equivalence, where a resultant force is considered dynamically 
equivalent to a given force system acting on a rigid body if the 
contributions to the body’s stability of the resultant force and 
the original force system are equal. This demand is stronger 
than the demand for static equivalence. Static equivalence 
yields a resultant force vector and its line of action. The 
location on this line remains undetermined, as it does not affect 
the nominal state of a rigid body. However, for the assessment 
of the stability of this nominal state, the application point on the 
line of action is essential. Demanding dynamic equivalence 
pinpoints the attachment point of the resultant force on the body 
in a unique manner. This point was called the dynamically 
equivalent point of attachment. 

 
 
 
 
  
 (a) 
 
 
 
 
 
 
 
  
 
 (b) 
 
 
 
 
 
 
  
  
 
 (c) 
 
 
 
Figure 9. Shoe box: (a) given configuration of center of buoyance and 
center of gravity, (b) physical force system, (c) dynamically equivalent 
force system. 
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 It was shown that the dynamically equivalent resultant force 
of two given constant forces applies at the intersection of its 
line of action and the circle put up by the application points of 
the given forces and the intersection of their lines of action. 
This result yields a convenient graphical method for finding the 
dynamically equivalent application point of the resultant force. 
The determination of the combined center of mass can be 
considered as a special case of this theorem.  
 Two examples were given that illustrate the versatility and 
the significance of the proposed treatise. The first example 
considered the suspension of a body by springs only. It was 
shown that the body was statically balanced for rotation, while 
the center of rotation proved to be a virtual stationary point. 
The second example treated the roll stability of a ship. Using 
the proposed methodology, the metacentric height was 
determined in a natural and convenient way. 
 Future research will be directed towards the implication of 
dynamic equivalence of spatial force systems. Another field of 
application is present in robotic end effectors. In order to 
determine the stability of a grasp [7], the nature of the grasp 
forces is predominant, i.e. sliding of sticking; with fixed or 
floating line of action; zero or non-zero free length springs, etc. 
Consequently, future work comprises the dynamically 
equivalent composition of other than constant and central linear 
forces, and the application to the synthesis of stable grasps. 
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NOMENCLATURE 
a   distance between fixed spring attachment points 

ia   position vector of a fixed spring attachment point 
relative to a fixed reference frame  

ci /a  position vector of a fixed spring attachment point 
relative to a local reference frame 

A   cross sectional area 
A   matrix used to effect the planar form of vector 

multiplication 
b   ship width 
c   distance of center of gravity above ship floor 
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d   distance between two points 
e   unit vector 

iE   identity matrix of rank i 
F   magnitude of force 
F   force vector 
g   acceleration of gravity 
h   submerged depth of ship 
i   index, counter 

cI   mass moment of inertia with respect to point C 
ooI  area moment of inertia of horizontal waterline area 

k   spring stiffness 
K   tangent stiffness matrix 
�   length of ship 
m   mass 
M   mass matrix 
n   number of external forces 
p   fraction  
r   link length  
ir   position vector of a moving spring attachment point 

relative to a fixed reference frame 
ci /r   position vector of a moving spring attachment point 

relative to a local reference frame 
R   rotation matrix 
V   potential, potential energy 
Vol  displaced water volume 
w   depth of center of gravity below waterline 
�   first order variation 
�   density 
�   variable angle 
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