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Abstract

Following in the wake of the increased bicycle popularity, bicycle research arose in the late
19th century. Early research, regarding the dynamic behavior of an uncontrolled bicycle,
resulted in the Carvallo (1899) and more general Whipple (1899) model. In the past years,
extensive research has been done to validate these uncontrolled bicycle models. However, the
bicycle is normally accompanied by a rider, for which the combined rider/bicycle dynamics
are less understood. The goal of this research is to identify the active rider contribution
during stabilization tasks in bicycling. This knowlegde may be used to develop better and
more user-specific bicycles in the future.
The equations governing the combined rider/bicycle system subjected to an external distur-
bance are derived in the first chapter. Here, the bicycle is modeled according to the linearized
Whipple model, where the passive rider dynamics are already included. After a process of
trial and error, a flexible rider model structure is chosen, which interacts with the bicycle
through steering torque. To be more specific, the rider model allows for proportional, inte-
gral, derivative and 2nd order derivative linear feedback on both the roll and steering angle
and is limited by activation dynamics and transport delays.
An experimental dataset from our colleagues of the UC Davis is used to obtain a prelimi-
nairy rider model. First a non parametric FIR model is derived, which serves as a platform
for subsequent parametric modeling. The parametric models are fitted by minimizing the
sum of errors squared between the non parametric and parametric steering angle responses,
resulting in a set of optimized parameters. The resulting parametric model, which consists
of 8 parameters, acounts for 97% of the variance of the non parametric model output. The
parameter may be reduced from 8 up to 4 parameters, while the variance acounted for only
lowers with 3%.
The following important observations are made from the parametric model results:

• The steer into the fall principle is observable in the positive roll angle and rate feedback
for all measurements.

• The roll angle, roll rate, steering rate and integral action are the key contributers and
cannot be removed without causing a major drop of the VAF.
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• The integrative steering action controls the heading by applying counter steering.

The identification results are used to set up a future frequency domain rider identification
experiment. The experiment should be performed at forward velocities of 2, 3, . . . , 7 m/s,
since the dynamic behavior is velocity dependent. A disturbance input signal has also been
designed, and should be applied as a generalized roll torque to the system. A randomly
appearing multisine input signal is created, with a bandwidth of 0.2 to 4 Hz, and where
the input power is scaled sucht that its absolute value does not exceed the 40 Nm. The
measurement time is set to 163.84 s at a sampling frequency of 200 Hz. A simulation study
indicates that the parameters can be estimated with an error of less than 3% relative to the
true parameters.

Next, a number of perturbator designs are presented. The goal of these designs is to apply a
desired perturbation spectrum as a generalized roll torque to the rider/bicycle configuration.
4 perturbator designs are presented, namely; the swing, sliding mass, lateral accelerator and
simple rope perturbator. The designs are evaluated by the following criteria; active system
contribution, passive system contribution, rider interaction, implementability and cost. Here,
the sliding mass perturbator shows the best overall score and is recommended for further
development.

Apart from the rider identification, some errors in bicycle literature where encountered. To
be more specific, the models presented in van Lunteren and Stassen (1970) and Stassen and
Lunteren (1973) where found to contain sign errors. After correcting for these sign errors,
the models where implemented in Matlab, but where found to be unstable.
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Chapter 1

Introduction

The bicycle originates from the 19th century and has evolved over the years to the variety of
bicycles we know today. Clearly, the bicycle has become a very popular means of transport.
This popularity is expected to last, because of the ongoing need for consumer mobility.

Following in the wake of the increased bicycle popularity, bicycle research arose in the late
19th century. Early research, regarding the dynamic behavior of an uncontrolled bicycle, re-
sulted in the Carvallo (1899) and more general Whipple (1899) model. The latter is recently
reformulated into the canonical Whipple model by Meijaard et al. (2007), which is accom-
panied by experimental results from Kooijman et al. (2008) and serves as a benchmark for
future bicycle research.

However, the Whipple model only describes the uncontrolled behavior of a bicycle, whereas
the bicycle normally is accompanied by a rider. The combined bicycle/rider dynamics are
less understood, for which the rider identification forms the main subject of this thesis. If this
succeeds, we will have the complete picture consisting of both rider and bicycle. This deeper
knowledge can be used to design user-specific bicycles. For example; elder people may find
a need for a more stable bicycle. However, before all of this, the following research question
needs to be answered:

- How does the rider control the bicycle? -

This is still a very broad question, for which we need to introduce some additional boundaries.
Both Weir (1972) and Doyle (1988) describe the inner loop roll stabilization to be the essential
bicycle skill, which serves as a base for high level control actions such as cornering, obstacle
avoidance, etc. In addition, Weir also describes the steering torque to be the main control
method. Therefore, we will limit ourselves to the case of roll stabilization through rider
enforced steering torque, where the upper body movement is constrained.

This thesis starts of with a general control description, describing the combined bicycle/rider
dynamics and also how an external force can be incorporated within these equations. Next,
an experimental dataset is presented in chapter 3, where the combined rider/bicycle system
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2 Introduction

subjected to an external disturbance is measured. This dataset allows for system identifica-
tion, which is the subject of chapter 4, where a preliminairy model of the human rider action
is obtained. This model is then used for designing future experiments, which is described
in chapter 5. Here, the measurement settings and input signal are designed for a frequency
domain experiment. Next, a perturbator is designed in chapter 6, which should be capable
of physically realizing the input signal. An overall discussion is given in chapter 7, which is
followed by the conclusions and recommendations (chapter 8). The thesis ends with a number
of appendices, which provides some supplementary material.
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Chapter 2

System Description

In this chapter we will set up a frame work which will form the base for subsequent analysis.
First the bicycle equations are introduced and converted to state space description. Secondly
a frame work for potential rider models is introduced, for which a number of parametric
candidate models will be discussed in more detail. Finally the two separate models are
combined into the general control description, which allows for easy simulation, manipulation
and identification of the system.

2-1 Bicycle equations

In this section a model for the bicycle will be presented and discussed. The model describes
the dynamic behavior of the uncontrolled bicycle, which is described in more detail in Meijaard
et al. (2007). Here, the following model assumptions are made:

• rigid bodies

• symmetric about vertical plane

• knife-edge wheels

• point contact, no side slip

• flat level road

• no friction or propulsion

The bicycle configuration with is shown in figure 2-1.

2-1-1 Bicycle equations

The linearized Whipple bicycle equations are known to give an accurate description of the
bicycle dynamics (Kooijman et al., 2008). The linearization also results in a first-order de-
coupling of the forward dynamics and the lateral (roll and steer) dynamics.
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4 System Description

Figure 2-1: Configuration of the bicycle and dynamic variables. The configuration space is
spanned by the following 7 variables; x and y-coordinates of the rear contact point, yaw angle ψ,
frame pitch angle θB , roll angle φ, steering angle δ and rear wheel pitch angle θR. Taken over
from Meijaard et al. (2007).

First linear equation

The first equation describes the change in angular rear wheel rate θ̇R;[
r2
RmT + IRyy +

(
rR
rF

)2
IFyy

]
θ̈R = TθR , (2-1)

with; total bicycle mass mT , rear wheel radius rR, front wheel radius rF , axial rear wheel
moment of inertia IRyy, axial front wheel moment of inertia IFyy and propulsive rear wheel
torque TθR . The velocity of the bicycle is given by: v = −rRθ̇R. From the equations we
observe that the velocity remains constant in the absence of a real wheel torque. This is a
nice property, since the roll and steer equations change as a function of the forward velocity,
which will be discussed next.

Roll and steer equations

Next the linearized roll and steer equations are given by:

Mq̈ + vC1q̇ +
[
gK0 + v2K2

]
q = f , (2-2)

where q = [φ, δ]T and f = [Tφ, Tδ]T . Here the equations are written as explicit functions of the
forward velocity v and gravity g. The components of the system matrices are determined by
the physical parameters of the bicycle, which are ommited here, but can be found in Meijaard
et al. (2007). The roll and steer dynamics can be excited through roll (Tφ) and steer (Tδ)
torque.
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2-1 Bicycle equations 5

Heading and real wheel contact location functions

Optionally, the derivatives of the heading ψ and real wheel contact coordinates xp and yp can
be expressed in terms of the state variables as:

ψ̇ = vδ + cδ̇

w
cosλ , (2-3)

ẋp = v cosψ, (2-4)
ẏp = v sinψ, (2-5)

where c is the trail distance and w the wheel base. Notice that these functions do not appear
in the forward and lateral equations of motion. This is due to the translational symmetry of
the system, e.g. the system is invariant of global translation and orientation (heading). The
actual heading and position expressions are non-linear can be obtained through numerical
integration of equations 2-3, 2-4 and 2-5.

2-1-2 Uncontrolled dynamic behavior

The uncontrolled dynamic behavior of the bicycle (f = 0) is a function of the physical param-
eters, gravitational acceleration and forward velocity of the bicycle. The dynamics of bicycles
are best understood by calculating and analyzing the eigenvalues and vectors of the system
matrices. By doing so, the system dynamics are decoupled in the time domain (eigenvalues)
and spatial domain (eigenvectors). A good description of the uncontrolled bicycle dynamics
for the benchmark case is given by Meijaard et al. (2007). Here three important eigenmodes
are identified; the castering, capsize and weave mode, of which the latter two are most in-
teresting concerning bicycle stability. The eigenvalues of the benchmark bicycle are shown in
figure 2-2 and indicate stability for a certain forward speedrange; vw < v < vc.

2-1-3 Bicycle stability

The problem of stabilizing the bicycle is very similar to stabilizing an inverted pendulum
on a cart. Whenever the pendulum starts to fall over, the cart needs to accelerate in the
direction of the fall in order to restabilize the system. In a passive (e.g. non actuated)
inverted pendulum on a cart system, there is no passive mechanism of accelerating in the fall
and thus the uncontrolled system is unstable. For the case of the uncontrolled bicycle, these
mechanisms do exist, as will be explained next.

Let’s assume the lateral acceleration of the total center of mass is equal to the rear wheel lateral
acceleration. This lateral acceleration relative to the bicycle (denoted by the apostrophe) is
given by:

ÿp
′ = vψ̇ = v2

w
δ cosλ+ vc

w
δ̇ cosλ. (2-6)

The first term, which is proportional to the steering angle, is the dominant term at higher
forward velocity (v > 1 m/s). From this equation, we observe that the bicycle can be stabilized
by steering into the direction of fall. By doing so, the support line (PQ) is being moved back
under the total center of mass, thereby stabilizing the system.
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6 System Description

Figure 2-2: Eigenvalues λ of the benchmark bicycle plotted as a function of the forward velocity
v. The uncontrolled bicycle is stable between the weave vw and capsize vc speed. At lower
velocities the oscillatory weave mode becomes unstable, whereas at higher velocity the capsize
mode becomes unstable. The castering mode is stable across the entire speed range of 0 < v < 10
m/s2. Reprinted from Meijaard et al. (2007).
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2-1 Bicycle equations 7

There are three possible passive mechanisms which stabilize the bicycle by coupling falling
by creating a coupling between falling (rolling) and steering. The effects produced by these
mechanisms are called; caster, gyroscopic and mass distribution effects. The latter was re-
cently demonstrated by Kooijman et al. (2011), where it is shown that a bicycle without
gyroscopic and caster effects can be stabilized by proper mass distribution.

2-1-4 Passive rider

This section describes how the passive (lumbed) rider characteristics interact with the system.
Here the rider is not completely passive, but uses some level of muscle activation to maintain
a certain (passive) posture on the bicycle. The presence of such an passive rider adds extra
inertia to the system, affecting the dynamics of the total system (rider + bicycle). There are
several models to include the passive rider properties withing the system dynamics. Two of
these methods will be described in this section.

Rigid rider

The dynamics of the bicycle can be extended by adding a rigid rider to the equations. The
simplest way is to model the rider as a rigid body which is rigidly connected to the frame. By
doing so, the rider is effectively modeled as a hands free rigid rider, introducing extra inertia
terms (mainly affecting roll dynamics) to the equations.

Passive rider

A more sophisticated way of modeling passive hands-on rider models to the bicycle equa-
tions is given by Schwab et al. (2011). Here the riders upper body movement is determined
kinematically as a function of the configuration of the bicycle. By doing so the configuration
space remains the same, but the introduction of a passive rider does introduce additional
inertia and stiffness to the system. The main body of the rider adds to the roll inertia terms
of the system, whereas the inertia of the arms mainly attributes to the inertia corresponding
to steering. Two distinctive rider positions are identified; forward upper body position with
bend arms or upright upper body position with stretched arms (figure 2-3). It is shown that
adding a hands-on passive rider model can dramatically change the eigenvalues in comparison
with the rigid rider model.

2-1-5 Rider lean

The rigid and passive rider models do affect the dynamics, but not the configuration space
of the bicycle model. In other words, the structure of the equations stay the same, but the
coefficients change. These rigid and passive rider models do not allow for rider lean, while
in reality it is possible to control the bicycle by upperbody leaning action. This rider lean
action can be modelled by introducing an extra degree of freedom in the bicycle equations,
namely rider lean which will be indicated by γ. This degree of freedom is modelled as a
rotational joint near the seat post, with the axis of rotation facing forwards (x-direction). As
a result, the rider lean also introduces a corresponding lean torque Tγ . A detailed description
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8 System Description

Figure 2-3: Left; stretched arm rider position. Right; bend arm rider position.

of incoorporating lean action in the bicycle equations can be found in Schwab et al. (2011).
However for now we will omit the rider lean action and limit ourselves to the roll and steer
equations.

2-1-6 Control forms

For control purposes it is convenient to express the bicycle equations either in state space
form or as a set of transfer functions.

2-1-7 State Space representation

The state space representation is give by:

ẋ = Ax + Bf (2-7)
y = Cx + Df (2-8)

Here the state is chosen to be: x = [φ̇, δ̇, φ, δ]T , input f = [Tφ, Tδ]T and output y = [φ, δ]T .
The system matrix A, input gain matrix B, observer matrix C and direct feed-through matrix
D are given by:

A =
[
−M−1vC1 −M−1 (gK0 + v2K2

)
I 0

]
, B =

[
M−1

0

]
,

C =
[

0 I
]
, D = [0] .

(2-9)
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2-2 Rider 9

2-1-8 Transfer function representation

The state space equations can also be expressed as a set of transfer functions Hyf(s) by making
use of:

Hyf(s) = C (sI−A)−1 B + D, (2-10)

such that:

y(s) = Hyf(s)f(s) , (2-11)

where the s denotes the Laplace argument. Finally we end by introducing the reference error
z. Since we are interested in roll stabilization, this simply becomes z = −φ, resulting in the
following transfer function:

z(s) = Hzf(s)f(s) , where Hzf(s) = −[0, 0, 1, 0] Hyf(s) (2-12)

2-1-9 Summary

At a constant forward velocity the dynamic behavior of the bicycle is governed by the coupled
lean and steer equations. In this case there are two inputs which influence the dynamic
behavior of the system; 1.) by applying steering torque or 2.) by applying roll torque. The
dynamic behavior of the bicycle is dependent on the bicycle parameters, forward velocity and
gravity. The bicycle can be stabilized by steering into the fall. Passiver rider contributions
affect the coefficents of the bicycle equations but not the structure itself. An additional
degree of freedom may be introduced, describing the rider lean angle relative to the bicycle.
For control purposes, it is convenient to transform the linear roll and steer equations to state
space form or as a set of transfer functions.

2-2 Rider

In this section we will introduce a model structure describing the rider action. Such a model
is desired, since it will allow for simulations of the combined/rider bicycle system. First,
several rider models from literature were implemented and investigated, such as the optimal
controller and the Lunteren and Stassen Model, which are both described in section A. Later
on, we also obtained an experimental data set from our colleagues of the UC Davis. This
section will mainly focus on the experimental model, since this experimental data set reduced
the need for a literature based model. However, a great deal of time and energy is spend
in understanding some of the models described in literature, for which a detailed analysis is
given in appendix A.

Before moving on we’d like to point out that finding the right model structure is a itera-
tive process, which requires a number of identifaction and parameter estimation cycles as
described in chapter 4. Therefore, rider model presented in this section is the heuristic result
of numerous and often unsuccesfull iterations. The following parametric models where tried
but proved to be unsuccesfull in the sense that the model errors where rather large:
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10 System Description

• Simple optimal controller

• Full state feedback controller

• Intuative controller

Due to time limitations, these results are not included in this thesis. Next, we will introduce
the resulting rider model, which will be used throughout this research.

2-2-1 Input/output structure

We start of with introducing a ’general’ rider model structure. This structure is still general
in the sense that no specific parametrization are defined, but the input/output structure is
fixed. Here, we defining a linear input and output structure of the rider model, where the
parameters are assumed to be a function of the forward velocity v, since the bicycle dynamics
are known to change with the forward velocity.

Rider input

The rider input is defined as the information on which the rider takes appropriate action.
For example the rider output may depend explicitly variables like; forward velocity, bicycle
configuration, age and even alcohol pro-millage, since these variables probably affect the
steering capabilities of the rider. However, to keep things simple, we only consider the bicycle
configuration y and forward velocity v to be the input variables for the rider model.

Rider output

The rider output will act as an input on the bicycle model. According to Kooijman and Schwab
(2008) the roll angle is mainly controlled by steering torque control, whereas the upper-body
lean action is insignificant. Moreover, during the experiments described in chapter 3, this
upper-body lean is restrained by a harness connected rigidly to the bicycle. In addition the
knees are also connected to the bicycle frame through a set of magnets. All together, this
makes it very unlikely that the rider uses other control means than the steering control. The
bicycle model, described in section 2-1, consists of two inputs; roll torque Tφ, and steering
torque Tδ. Since the rider is only expected to control the bicycle through steering action, we
will omit the roll action.

Concludingly, the rider output only affects the generalized steering torque of the bicycle.
This rider contribution to the generalized steering torque will be denoted by Tδ,u, where the
subscript u indicates the rider contribution.

Input/output definitions

Concludingly, the rider model structure will be of the following form:

u(s) = K(s,θ(v))y(s) (2-13)
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2-2 Rider 11

with controller K, which is a function of the velocity dependent parameters θ(v) and defines
a linear mapping between rider input y = [φ, δ]T and output u = [Tδ,u]T . Figure 2-4 shows a
block scheme of this model structure.

K
y u

Figure 2-4: Block diagram of the general rider input/output structure, with controller K =
K(s,θ(v)), input y = [φ, δ]T and output u = [Tδ,u]T .

Since the rider only outputs steering torque, the rider output can be incorporated within the
bicycle equations in terms of the generalized forces f , according to:

fu = Hfuu , with Hfu =
[
0
1

]
. (2-14)

2-2-2 Rider model structure

Now that we have defined the general input/output structure, we are ready to specify the
internal control structure of K. In addition we know that the rider model is limited by the
inherent human limitations such as neuromuscular lag and time delay. We will start of by
presenting a gain model, after which models for the human limitations are introduced.

Sensory feedback gains

Next we introduce a number of sensory feedback gains, which act linearly on the bicycle
configuration output. We assume the rider to be capable of sensing and applying proportional,
integrative, first and second order derivative action. These assumptions may be modeled
mathematically according to:

Kφ(s) = kφp + kφi s
−1 + kφd s+ kφdd s

2 , (2-15)
Kδ(s) = kδp + kδi s

−1 + kδd s+ kδdd s
2 , (2-16)

with roll angle feedback Kphi and steer angle feedback Kδ. The gains k with subscript p, i,
d and dd indicate proportional, integral, first and second order derivative gains respectively.

Next we will shortly analyze the sensory system of the rider. These available sensory systems
regarding human movement control are described by Herman van der Kooij (2008). Table
2-1 indicates which variables may be observed by the sensory system.

In this table , a number of required feedback variables are still missing, including:
∫
φdt, φ̇,∫

δdt and δ̈. However, according to McRuer and Jex (1967) the human controller is capable of
differentiating and integrating sensory feedback. By doing so, the human controller potentially
has access to all of the required feedback variables. In addition, from equation 2-3 we observe
that the heading is strongly related to the steering angle integral, which means that the rider
may observe this variable directly through the use of vision.

On the other hand, the accuracy of these sensory systems may also be reduced by sensory
noise, limited bandwidth, etc. It goes beyond the scope of this report to treat all these
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12 System Description

Sensory system Measured quantities Bicycle variables

Muscle spindles: position, velocity δ, δ̇
Golgi tendon organs: force Tδ
Vestibular: acceleration, vertical angle φ, φ̈
Vision: position, velocities, horizon, etc. φ, δ, v, x, y, ψ

Table 2-1: Sensory systems regarding human movement control and observed variables.

limitions in detail, so it remains questionable whether the rider is truly capable of sensing all
of the required feedback variables.

More information about the human sensory system can be found in appendix E.

Rider limitations

According to McRuer and Jex (1967), the human controller is inherently limited by neuromus-
cular lag and time delays. Here neuromuscular dynamcis are modeled using shoulder muscle
parameters according to de Vlugt et al. (2003) and Happee et al. (2009), which yields:

Gnm(s) = ω2
c

s2 + 2ζωc + ω2
c

, (2-17)

with cuttof frequency ωc = 2.17 · 2π rad/s and damping coefficient ζ =
√

2. This system acts
as a critically damped second order filter with a cuttoff frequency equal to ω0.

Next the transport delays result in an effective time delay. This delay is modeled according to
de Vlugt et al. (2003), Happee et al. (2009) using shoulder muscle parameters, which yields:

Gτ (s) = e−τds , (2-18)

with timedelay τd = 0.03 s.

Combined model

Finally the human limitations and gain model are combined to form a rider model according
to equation 2-13. By combining equations 2-17, 2-18 and 2-16 we form:

K(s) = Gnm(s)Gτ (s)
[
Kφ(s) Kδ(s)

]
(2-19)

The complete rider model is presented as a blockdiagram in figure 2-5.

Parameterization

Notice that the model given by quation 2-19 still needs to be parameterized. A natural choice
would be to define the unknown gains as the parameters. In this case the parameter vector
simply becomes:

θ = [kφp, kφi, kφd, kφdd, kδp, kδi, kδd, kδdd]T (2-20)
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K
Kφ(s)

Kδ(s)
Gnm(s)Gτ (s)

y
φ

δ

u+

+

Figure 2-5: Block diagram of the inner control structure of K, with roll and steering angle
feedback gains Kφ and Kδ, timedelay Gτ , neuromuscular lag Gnm, input y = [φ, δ]T and output
u = [Tδ,u]T .

These parameters will be determined later on by fitting the combined rider/bicycle model
onto an experimental dataset. Later on, in section 4-2-2, we will try to reduce the number of
parameters through parameter reduction techniques. As stated before, these parameters are
assumed to be a function of the forward velocity, so actually θ = θ(v).

2-2-3 Co-contraction

According to de Vlugt et al. (2003), the human operator may also use co-contraction as a
possible control mechanism. Co-contraction is generated by contracting muscles of opposite
functionality, which are called antogonists. By doing so, the human controller is able to
effectively generate stiffness and damping to the system. This type of control is open loop
and requires no feedback, therefore it does not suffer from neuromuscular lag and delay. In
the case of bicycling, this co-contraction may be applied to the steering angle to steering
torque control, and could be modelled according to:

Tφ,cc = (kδp,cc + kδd,cc s)δ , (2-21)

with co-contraction steering torque Tφ,cc, stiffness kδp,cc and damping kδd,cc s. Since the co-
contraction control is not limited by neuromuscular lag and transport delays, it provides a
good mechanism for control of high frequency force perturbations during position tasks.

As an explorative side step, the co-contraction was added to the steering angle control of
equation 2-19, for which a full system identification cycle is performed (similar as described
in chapter 4). Here, the resulting parameter vector could not be uniquely identified, since
kδp,cc, kδp and kδd,cc, kδd where dependent on each other. This resulted in huge unrealistic
gain pairs of opposite sign, with little effect since they where mainly cancelling each other.
In short, adding the co-contraction parameters to the parametric rider model proved to be
troublesome and therefore is not recommended.

In addition, since we will only apply a roll torque perturbation, the steering action presumably
requires feedback control instead of co-contraction control. Concludingly, we wil not include
co-contraction control into the rider model.

2-2-4 Summary

In this section we have introduced a general input/output structure for the rider model. In
addition we also presented a internal model with proportional, integrative and first and second
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14 System Description

order derivative feedback on the bicycle output configuration. This model also includes human
limitations, such as neuromuscular lag and transport delay. Co-contraction is not included in
the rider model. The rider model is summarized in figure 2-5, where a block diagram of the
complete rider model is shown.

2-3 External input

In addition to the rider input, external forces may also act on the system. By using the
principle of virtual power, these forces can be incorporated into the equations of motion as a
generalized external force fw. Suppose we have an arbitrary force w acting on point x of the
bicycle. This point can be expressed in terms of the generalized coordinates q according to
x(q). Next we set up the virtual power balance according to:

[δq̇]T fw = [δẋ]Tw , (2-22)

where δ represents the variational operator. Next we take the partial derivative of x with
respect to q, which yields:

[δq̇]T fw = [δq̇]T
[
∂ẋ
∂q̇

]T
w . (2-23)

Since the virtual velocity vector can take any value compatible with the constraints, the
following equations should hold:

fw = Hfww , with Hfw =
[
∂ẋ
∂q̇

]T
. (2-24)

2-4 General control description

According to Skogestad and Postlethwaite (2005) almost any plant and controller can be
described according to the block scheme presented in figure 2-6. In this section we will
combine and rewrite the bicycle/rider dynamics into this generalized control form. This
model seperates the unknown human controller K from the known plant P which contains
the bicycle equations (including passive rider contribution). The general plant has two inputs,
namely; external input w and control output u and two outputs; reference error z and control
input y. All the analysis is done in the Laplace domain, so for convience the Laplace operator
s will be dropped throughout the subsequent analysis.

2-4-1 Block definitions

Next, we will define the blocks of the general control description. The rider controller K
is already defined in the rider section, so we only need to define the generalized plant P.
Lets start off by partitioning the generalized plant in terms of input/output contributions
according to:

P =
[

Pzw Pzu
Pyw Pyu

]
, (2-25)
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P

K
yu

w z

Figure 2-6: Block diagram of the general control description, with known bicycle dynamics P,
unknown controller K, disturbance input w, error output z = −φ, control input y and control
output u.

such that we can write:

z = Pzww + Pzuu , (2-26)
y = Pyww + Pyuu . (2-27)

Let us compare this with the bicycle equations, where the force input is a summation of the
external force and rider force, according to:

f = fw + fu (2-28)

By combining equations 2-11, 2-12 and 2-28 we derive:

z = HzfHfww + HzfHfuu , (2-29)
y = HyfHfww + HyfHfuu . (2-30)

From this we observe that:

Pzw = HzfHfw ,

Pzu = HzfHfu ,

Pyw = HyfHfw ,

Pyu = HyfHfu .

2-4-2 Closed loop transfer function

Next we will derive the closed loop transfer unction from w to z and y. Lets start off by
writing out input u in terms of w:

u = Ky ,

= K (Pyww + Pyuu) ,

= (I−KPyu)−1 KPyww . (2-31)

Subsituting 2-31 into 2-27 yields the following closed loop transferfunctions:

z =
[
Pzw + Pzu (I−KPyu)−1 KPyw

]
w , (2-32)

y =
[
Pyw + Pyu (I−KPyu)−1 KPyw

]
w . (2-33)
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For which the second equation will prove to be the most usefull, therefore we introduce the
shorthand notion:

y = Gw , G =
[
Pyw + Pyu (I−KPyu)−1 KPyw

]
. (2-34)

This result can be used to simulate output of the system by applying some disturbance signal
w(t) to the system. They also allow for stability analysis, which can be achieved by analyzing
the poles of these transfer functions. If the poles all lie in the negative real plane, then the
closed loop system is stable.

2-4-3 Summary

In this section we introduced the concept of a general control description. The resulting
model describes the dynamics of the combined system, while the known plant and unknown
controller are still seperated. This general description will prove to be usefull in subsequent
analysis.
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Chapter 3

Experimental Data Analysis

Thanks to the excellent work of our colleagues Jason Moore and Luke Dale Peterson under
supervision of Prof. Mont Hubbard of the UC Davis, we obtained a large experimental dataset
regarding rider identification in bicycling. In this chapter the experiment, by which the data
set is generated, is explained briefly and the measured variables are introduced. The dynamic
properties of the bicycle and passive rider are also measured, which can be combined into the
linearized mass, damping and stiffness matrices. In succeeding chapters, these measurements
and bicycle properties will be used for system identification and parametric modeling of the
human controller.

3-1 Experiment description

The goal of their experiment is similar to ours, namely to identify human rider control in
bicycling. In order to achieve this goal, a measurement bicycle is constructed, which is fully
equipped with a number of sensors to measure the state, rider input, etc. In addition, a per-
turbator mechanism is also created, which is used to excite the system. These perturbations
are applied by laterally pulling a rope, which is attached just below the seat of the rider. The
following constraints are also build in to the measurement bicycle:

• The upper body lean is constrained by rigidly fixing the upper body with a harness to
the bicycle frame.

• The bicycle is electrically driven, so the rider does not need to exert pedaling power
and thus eliminates the need for lower limb movement.

• The knees are also fixed to the bicycle frame, which prevents the lateral knee movement
described in Kooijman and Schwab (2008)

Two different kinds of experiments are performed; lateral line tracking and roll stabilization
of which only the latter is used for further analysis, since the goal of our research is about
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18 Experimental Data Analysis

Figure 3-1: Photo of the measurement bicycle which is used for rider identification in bicycling.
Source: picasaweb.google.com/moorepants.

Figure 3-2: Left; perturbation run performed on the pavilion floor. Right; balance exercise
performed on a horse treadmill. Source: picasaweb.google.com/moorepants.
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3-1 Experiment description 19

Variable Symbol Units Notes

Forward velocity v [m/s -
Roll angle φ [rad] -
Steering angle δ [rad] -
Roll rate φ̇ [rad/s] -
Steering rate δ̇ [rad/s] -
Disturbance force w [N] -
Steering torque Tδ [Nm] Still contains some errors

Table 3-1: Variables which are measured during the experiments in Davis, California.

RunID Rider v (m/s) T (s) Enviroment Datetime Task description

105 Jason 3.2 60 Horse treadmill 24-Feb-2011 18:28:23 Line tracking with disturbance
280 Luke 2.1 90 Horse treadmill 30-Aug-2011 15:38:43 Balance with Disturbance
282 Luke 4.3 90 Horse treadmill 30-Aug-2011 16:07:59 Balance with Disturbance
285 Luke 7.4 90 Horse treadmill 30-Aug-2011 16:20:52 Balance with Disturbance

Table 3-2: Run number used for further data analysis. Notice that the rider and task of the first
entry is different from the other three.

stabilizing the bicycle. The experiments are performed in two environments; on a horse
treadmill and at the pavilion floor (figure 3-2). The horse treadmill proved to be more suitable
for the perturbation experiments, since it is more easy to perturb a stationary positioned
bicycle by pulling the rope. A downside of this environment is the rather narrow track,
resulting in a stressful and unnatural overly concentrated way of bicycling. The treadmill
perturbation experiments are performed at forward velocities of 2, 3, 4 and 7 m/s with a
measurement time of T = 60− 90 seconds, each of them is repeated a number of times. After
the experiments the dimensions and inertial properties of the bicycle are measured in order
to obtain the dynamic model. The passive rider contribution is also included in the model,
which are determined according to Yeadon and Morlock (1989).

3-1-1 Data description

Table 3-1 shows the variables that where obtained for each experiment. Four trials are chosen
for further analysis, which are shown in table 3-2. The corresponding data for these tri-
als is publicly available and may be downloaded from: http://biosport.ucdavis.edu/research-
projects/bicycle/instrumented-bicycle. These 4 trials are chosen, because they showed a clear
input/output relationship, which allows for system identification. Here, the first run is per-
formed with a different rider and task description than the other three, which may make it
hard to compare with each other. Figure 3-3 shows a typical measurement of the roll angle,
steering angle and input force.

3-1-2 Bicycle and passive rider measurements

Next the dynamic properties of the bicycle and passive rider are measured according to
Moore et al. (2010). These measurements include frame dimensions, inertial properties of
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20 Experimental Data Analysis

Figure 3-3: Measurements of the roll angle φ (top), steering angle δ (middle) and disturbance
w (bottom) for a forward velocity of 3.2 m/s.
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3-1 Experiment description 21

Figure 3-4: Inertial measurement of the bicycle frame by using a known torsional spring.

the separate bicycle parts (frame, steering fork, front and rear wheel) and passive dynamic
properties of the human rider according to Yeadon and Morlock (1989). Figure 3-4 shows a
typical inertial measurement performed on the bicycle frame. Here, a torque spring with a
known stifness is used to estimate the moment of inertia around this torque axis by measuring
the eigenfrequency. The bicycle/rider measurements can be combined to derive the mass,
damping and stiffness matrices of the bicycle equations introduced in chapter 2. During the
experiments the body lean angle was fixed using an upper body harness fixed to the bicycle,
resulting in γ = 0. This fixation effectively reduces the configuration space to q = [φ, δ]T . The
measured bicycle and estimated rider properties result in the following coefficient matrices:

M0 =
[

131.5085 2.6812
2.6812 0.2495

]
,

K0 =
[
−116.19 −2.7633
−2.7633 −0.94874

]
,

K2 =
[

0 102.02
0 2.5001

]
,

C1 =
[

0 42.748
−0.31806 1.6022

]
.

The transfer function which maps the external force to the generalized force is calculated
using multi-body software (Autolev) and given by:

Hfw =
[

0.91
0.014408

]
, (3-1)

From this we observe that the external force mainly excites the roll torque input and not so
much of the steering torque input. This makes sense, because the rope is attached under the
rider seat and is pulled in a lateral direction, which mainly causes a roll torque. This data
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can be combined into a reduced generalized plant model P according to:[
z
y

]
=
[

Pzw Pzu
Pyw Pyu

] [
w
u

]
, (3-2)

with external input w, controller input y = [φ, δ]T , error output z = −φ and controller output
u = Tδ,u. This description will be used in the next chapter, where we combine the known
system dynamics and measurements to obtain a model for the rider action.

3-2 Summary

In this chapter we have introduced an experimental dataset, which is obtained by our col-
leagues of the UC Davis. The dataset includes a number of perturbation runs, which are of
particular interest when identifying rider behavior. Many of these perturbation runs were
performed on a rather small horse treadmill, which seemed to result in a stressful and overly
concentrated way of bicycling. A number of variables are measured during these experiments,
including; roll angle, steering angle and the external disturbance. The first run at v = 3.2 m/s
is performed by a different rider and with a different task description than the other runs. In
addition the dynamic properties of the bicycle and passive rider are also measured, resulting
in the known system dynamics. Next, these measurements and known system dynamics will
be used for identifying rider control in bicycling.
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Chapter 4

System Identification

In this chapter we will use the experimental data set, described in the previous chapter, to
identify the underlying models. In order to achieve this, we will turn ourselves to system
identification methods. First some of the basic theory of system identification will be cov-
ered, after which a specific application is given for the bicycle case. Finally some analysis is
performed on these identification results.

4-1 Theory

According to Ljung (1987) the system identification procedure requires the following three
basic entities:

1. Data record of input and output signals.

2. Model structure; a set of candidate models.

3. Criterium; a rule by which candidate models can be assessed to the data.

The input and output data will be follow from the experiment. This experiment should be
set up such that the data record is highly informative. This concept of an informative dataset
is explained in more detail in section 5-5 and follows from a careful experiment design. Here,
choices should be made concerning which variables should be measured and where and what
inputs signals should be applied.

The model structure is the set of models which are fitted onto the data record. These models
offer a parametric mapping from input to output data. Dependent of the model, these pa-
rameters are determined using linear methods, or by parameter optimization algorithms. In
section 4-2-2 the specific model structure will be discussed in more detail.

These models will be evaluated by a criterium, for which often the least squares selection rule
is used. This selection rule is discussed in section 4-1-5.
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24 System Identification

4-1-1 System description

Next we introduce some of the basis system description theory of system identification. The
theory presented here, is mainly based on Ljung (1987) and will be about linear systems,
which are subjected to additive random disturbances. Here, the input/output data is modeled
according to the block diagram shown in figure 4-1. This type of systems is described by:

G(q) +

+
w(t)

v(t)

y(t)

Figure 4-1: System description, with; output y(t), input w(t), disturbance v(t) and system G(q).

y(t) = G(q)w(t) + v(t) , (4-1)

with output y(t), input w(t), disturbance v(t) and model G(q). The q operator acts as a
discrete shifting function, such that q−kw(t) = w(t − k). This is a convenient description,
because it separates the deterministic input related contribution G(q)w(t) from the stochastic
contribution v(t). The stochastic contribution may be split up into a deterministic noise filter
H(q) and underlying stochastic process e(t), such that:

v(t) = H(q)e(t) . (4-2)

The system identification challenge; for a given dataset, consisting of input u(t) and output
y(t), we like to identify the underlying input G(q) and noise model H(q). For the linear case,
these models describe a linear mapping between input and output according to:

G(q) =
∞∑
k=1

g(k)q−k , (4-3)

H(q) = 1 +
∞∑
k=1

h(k)q−k , (4-4)

The latter being normalized, such that H(0) = 1. These models basically describe convolution
operators, which map the inputs to the output. Throughout the succeeding analysis, it will
be assumed that the stochastic input e(t) is a white noise signal with zero mean µe = 0 and
variance λ.

The linear system description presented in this section will form the base for all subsequent
analysis. Both time and frequency identification methods will expand on this description.

4-1-2 Time domain expressions

First we introduce some definitions, which are useful when working with time domain data.
The auto covariance of some arbitrary signal s(t) and cross covariance of arbitrary signals
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s(t) and w(t) are defined as:

Rs(τ) = lim
N→∞

N∑
t=1

s(t)s(t− τ), (4-5)

Rsw(τ) = lim
N→∞

N∑
t=1

s(t)w(t− τ) . (4-6)

where τ represents a time shift. If the cross covariance between two signals is zero, than it is
said that the signals uncorrelated, which means they are independent of each other. This is
a useful tools, since the v(t) and u(t) are often found to be uncorrelated. In addition, since
the zero mean white noise input e(t) is uncorrelated for τ 6= 0, it can be shown that:

Rv(τ) = λ
∞∑
k=0

h(k)h(k − τ) (4-7)

4-1-3 Frequency domain expressions

Next, we introduce the frequency domain expressions by applying a discrete Fourier transfor-
mation (DFT). For an arbitrary signal s(t) of length N the transformation yields:

SN (ω) = 1√
N

N∑
t=1

s(t)e−iωt (4-8)

For which the inverse discrete Fourier transformation (IDFT) is given by:

s(t) = 1√
N

N∑
t=1

SN (2πk/N)ei2πkt/N (4-9)

The Fourier transformation of the auto and cross covariance functions are called the cross
and auto spectral density, which are given by:

Φs(ω) =
∞∑

τ=−∞
Rs(τ)e−iωτ , (4-10)

Φsw(ω) =
∞∑

τ=−∞
Rsw(τ)e−iωτ . (4-11)

By taking the DFT of the cross covariance of the disturbance spectrum Rv, it can be shown
that:

Φv(ω) = λ
∣∣∣H(eiω)

∣∣∣2 . (4-12)

Similar to 4-7 this is a usefull expression, since the noise cancels out, leaving only the variance
λ and noise model H(eiω). Later on we will use this result to obtain a noise model.
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4-1-4 Nonparametric Linear models

Next we introduce some nonparametric linear model structures. These structures are not
confined to a limited parameter space, instead they contain many parameters and are able
to model about any linear model. This makes them widely applicable, however there are
certain limitations on these models. Most importantly, the described nonparametric model
structures require v(t) and w(t) to be independent, so: Rvw = 0. This is generally not the
case when identifying closed loop configurations, where the noise is correlated with the input
due to the feedback. Solutions to closed loop estimators do exist however, but for now we
will focus on the open loop case where Rvw = 0.
These non parametric model structures exist for both time and frequency domain data. The
frequency domain models are is strictly correct, only for the case when the input is periodic
and where all the transients have died out, whereas the time domain models require the input
and output signals prior to t = 0 to be zero. The choice of method thus depend on the type
of data generated.

Time domain method

Starting of with equations 4-1 and 4-3 and by projecting the input w(t) onto the output we
derive:

Ryw(τ) =
∞∑
k=1

g(k)q−kRw(k − τ) +Rvw(τ) , (4-13)

It is assumed that the system hast stable dynamics (
∑∞
k=1 |g(k)| <∞ and

∑∞
k=1 |h(k)| <∞)

and that the input w(t) is uncorrelated with the stochastic disturbance v(t), resulting in
Rwv = 0. Since the system is stable, impulse response will gradually die out, and therefore can
be estimated by applying an finite observation length. Suppose the input u(t) is independent
of the noise v(t) and we have a finite dataset of length N , and the impulse response is well
described withing m samples. Finally we have a finite dataset of N samples. In this case, the
system can be approximated by:

R̂Nyw(τ) =
m∑
k=1

ĝN (k)q−kR̂Nw (k − τ) , (4-14)

where superscript N denotes the finite observation length approximations of the covariance
functions. The solution to this problem is similar to the FIR model, which is treated in section
4-2.

Frequency domain method

Starting of with equation 4-14 and by transformation to the frequency domain, we may obtain:

Φ̂N
yw(ω) = ĜN (eiω)Φ̂N

w (ω) , (4-15)

which can be solved easily for ĜN (eiω) according to:

ĜN (eiω) =
Φ̂N
yw(ω)

Φ̂N
w (ω)

, (4-16)
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The frequency domain conversion can be done very efficiently by making use of the Fast
Fourier transformation algorithm (FFT). And since convolution becomes multiplication in
the frequency domain, the unknown transfer functions may be obtained far more efficiently
compared to time domain methods. A DFTF conversion assumes the input to be periodic,
which is not the case for the current data set. However, by applying proper windowing
techniques, periodicity may be imposed on the dataset. In addition, frequency averaging may
be used to reduce the noise at the cost of decreasing the frequency resolution.

Finally the estimated transfer function may be used to estimate the disturbance spectrum,
according to:

Φ̂N
v (ω) = Φ̂N

y (ω)− |ĜN (eiω)|2Φ̂N
w (ω) . (4-17)

4-1-5 Parametric linear models

The set of data, which is described by equation 4-1, may be modelled similar according to:

y(t, θ) = G(q, θ)w(t) +H(q, θ)e(t) , (4-18)

where y(t, θ) denotes the modeled output and θ denotes the parameter vector. There are two
different kind of models which can be identified.

• Black-box model structures (non-physical)

• Model structures with physical parameters

Examples of black box models include; ARX, ARMAX, OE, BOX-Jenkings, etc. Whereas
the physical models may be obtained by first principles. For this research the latter is most
interesting, since we are interested in finding a physical explanation for human rider action. In
either case, we want to determine the parameters, such that they minimize a some objective
function VN (θ). This can be reformulated into an optimization problem, for which an optimal
parameter vector can be found according to:

θ̂N = arg min
θ
VN (θ) , (4-19)

where θ̂N denotes the optimal solution and VN (θ) denotes the criterium function, which is
subject of minimization. For time domain estimation, a common criteria function would be
the following quadratic criteria:

VN (θ) = 1
N

N∑
t=1

1
2e

2(t, θ) (4-20)

where the error is defined to be difference between the measured y(t) and modeled output
y(t, θ):

e(t, θ) = y(t)− y(t, θ) , (4-21)
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For the case of frequency domain identification, a commonly used sum of squares criteria
would be:

VN (θ) = 1
N

N∑
k=1

∣∣∣ĜN (eiωk)−GN (eiωk,θ, θ)
∣∣∣2 Φ̂N

u (ωk)
Φ̂N
v (ωk)

, (4-22)

which is frequency domain counterpart to the time domain criteria function (equation 4-20).
Again, this criteria is a sum of errors squared, weighted by the signal to noise ratio. The
minimization of is often non linear in the parameters and requires complex optimization algo-
rithms. More in depth information about optimization methods can be found in Papalambros
and Wilde (2000).

4-1-6 Model evaluation

Suppose we model structure appears to be correct and that we have found the solution θ̂N
to the optimization problem presented in equation 4-22. Let us next evaluate quality of
the fit and parameter uncertainty. A common criterium of analyzing the fitting quality is
the Variance Accounted For (VAF), which is defined as the normalized difference between
modeled output and measured output.

VAF = 1−
∑N

t=1 |y(t)− ŷ(t, θ)|2∑N
t=1 |y(t)|2

, (4-23)

where a VAF score of 1 means a perfect fit. In addition we can get estimate the parameter
uncertainty by analyzing the parameter sensitivity and noise levels. The parameter covariance
can either be obtained from numerical optimization output or analytically. It can be shown
that for a quadratic error criterium the parameter covariance can be estimated as:

cov θ̂ = λ̂N

[
1
N

N∑
t=1

ψ(t, θ̂N )ψT (t, θ̂N )
]−1

, (4-24)

with variance λ̂N and model sensitivity ψ(t, θ̂N ) , which are defined as:

λ̂N = 1
N

N∑
t=1

e2(t, θ̂N ) , (4-25)

ψ(t, θ̂N ) = − d

dθ
e(t, θ̂N ) = d

dθ
y(t, θ̂N ) . (4-26)

Appendix D describes how this result can be related to the Matlab optimization output.

Finally we present the analytic parameter covariance for the frequency domain, which will be
used later on during the experiment design described in chapter 5. The analytic parameter
covariance expressed in the frequency domain is given by:

cov θ̂N = 1
N

[ N∑
k=1

GT
,θ(eiωk , θ)Φ̂N

w(ωk)
Φ̂N

v (ωk)
G,θ(eiωk , θ)

]−1

, (4-27)

where G,θ(eiω, θ) denotes the partial derivative of G with respect to the parameters θ after
which it is substitued with θ̂N . From this result we observe that the covariance decreases
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with proportional to 1/N as the number of samples increases. In addition, it is dependent on
the signal-to-noise ratio and parameter sensitivity of the parametric model.

The standard error of the mean (sem) can be obtained by taking the square root of the
diagonal terms of the parameter covariance epression. These value indicate the uncertainty
of the parametric fitting, where a lower standard error of the mean corresponds to better
parameter accuracy.

4-2 Application

Next the theory is applied onto the dataset presented in the previous chapter. Here we are
interested in determining the closed loop unknown human controller contribution K. However,
we first will focus on obtaining a non parametric open loop model from from w to y. After
that, we use our knowledge of the known bicycle equations to estimate the parametric rider
model. This parametric model is then optimized by using parameter reduction techniques,
which reduce the number of parameters. The analysis is performed for forward velocities of
v = 2.1, 3.1, 4.3 and 7.4 m/s, resulting in a set of parametric models, which are discussed in
the next section.

4-2-1 Non Parametric Modeling

We start of by obtaining a nonparametric model for the input correlated data. Here we have
two options; frequency or time domain modeling. Since the input is non periodic and consists
of an number of impulses, we choose the impulse response representation, so G = G(q).

Notice that our system G described in equation 2-34 has one input w(t) and two outputs,
namely φ(t) and steering angle δ(t). This makes is effectively an MISO model, which we may
split up into two SISO models according to:

G(q) =
[
Gφ(q)
Gδ(q)

]
, (4-28)

such that φ(t) = Gφ(q)w(t) and δ(t) = Gδ(q)w(t).

Lets start of by reintroducing the impulse response representation of G (equation 4-3), which
may be rewritten into:

G(q) =
m∑
k=1

g(k)q−k +
∞∑

k=m+1
g(k)q−k . (4-29)

This impulse response function is of infinite length, which means we will never be fully able to
estimate it, since our dataset is of finite time. Fortunately, if the system G is asymptotically
stable, then the impulse response is expected to die out over time. In this case, the model
may approximated by simply taking the the first m samples, according to:

Ĝ(q) =
m∑
k=1

ĝ(k)q−k , (4-30)

which is known a FIR model and represents an impulse response function of finite length.
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Obtaining the FIR coefficients

The unknown coefficient of this FIR model may be estimated by using the measured input
w(t) and output y(t) data. The output data is either represents y(t) = φ corresponding to
Gφ(q) or y(t) = δ(t) corresponding to Gδ(q). We assume a finite discrete normalized time;
t = 1, 2, 3, . . . , n, such that:

y(t) =
m∑
k=1

ĝ(k)q−kw(t) + v(t) ,

=
m∑
k=1

ĝ(k)w(t− k) + v(t) . (4-31)

From the experiment we know that no input outside the measurement interval {1 < t < n}
is applied, which can be expressed as: w(t) = 0 for t < 1 and t > n. The summations may
be written out into matrix notion, resulting in:

y = Fx + ε , (4-32)

where:

y =
[
y(1) . . . y(n)

]T
,

x =
[
ĝ(1) . . . ĝ(m)

]T
,

F =

w(1− 1) . . . w(1−m)
... . . . ...

w(n− 1) . . . w(n−m)

 ,

ε =
[
ε(1) . . . ε(n)

]T
.

Since we are interested in finding a model that represents the measured output as accurate
as possible, we are interested in finding an optimal parameter vector x such that a certain
error function is minimized. In engineering, a common criteria is the following sum of least
squares criterium:

V (x) = 1
2εT ε ,

= 1
2 (Fx− y)T (Fx− y) ,

= 1
2

(
xTFTFx− xTFTy− yTFx + yTy

)
. (4-33)

For which an optimal solution can be found by solving the following optimization problem:

x̂ = arg min
x
V (x) , (4-34)

with optimal solution x̂. This problem can be solved analytically by setting the partial
derivative of the criterium V with respect to the parameters x to zero:

∂V

∂x = FTFx̂− FTy = 0 . (4-35)
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Figure 4-2: Impulse response model for the roll angle δ (top) and steering angle δ (bottom) for
a forward velocity of v = 2.1m/s. The raw FIR model is smoothed using a low pass filtering with
a cutoff frequency of 10 Hz.

Solving for x̂ requires the matrix FTF to non singular. Under this assumption the optimal
solution (in a least square sense) becomes:

x̂ =
(
FTF

)−1
FTy . (4-36)

This solution is implemented in Matlab and applied to the actual measurements. After
experimenting with different finite impulse lengths, the oscillations are found to die out after
m = 768 samples, which corresponds to finite response length of 3.84 seconds. The FIR
models are smoothed by applying a low pass 8th order Butter-worth filter with a cutoff
frequency of 10 Hz. The resulting models are discussed in the succeeding section.

Results

The FIR resulting FIR models are shown in figure; 4-2, 4-3, 4-4 and 4-5. These non parametric
models will serve as a base for future parametric modeling.

Obtaining the noise model

Next, we can use these results to estimate the disturbance v(t). By making use of equation
4-1, we obtain:

v̂(t) = y(t)− ĜN (q)w(t) , (4-37)

where v̂(t) = [vφ(t), vδ(t)]T is the estimated disturbance and ĜN (q) = [Ĝφ(q), Ĝδ(q)]T repre-
sents the obtained non parametric impulse response model from input w(t) to output y(t).

Master of Science Thesis P.D.L. de Lange



32 System Identification

Figure 4-3: Impulse response model for the roll angle δ (top) and steering angle δ (bottom) for
a forward velocity of v = 3.2m/s. The raw FIR model is smoothed using a low pass filtering with
a cutoff frequency of 10 Hz.

Figure 4-4: Impulse response model for the roll angle δ (top) and steering angle δ (bottom) for
a forward velocity of v = 4.3m/s. The raw FIR model is smoothed using a low pass filtering with
a cutoff frequency of 10 Hz.
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Figure 4-5: Impulse response model for the roll angle δ (top) and steering angle δ (bottom) for
a forward velocity of v = 7.4m/s. The raw FIR model is smoothed using a low pass filtering with
a cutoff frequency of 10 Hz.

The decomposition of the measured data into the deterministic input related component and
stochastic component is shown in figure 4-6. This noise model will turn out to be useful for
designing a frequency domain experiment, which is discussed in the next chapter.

Some observations

When analyzing figure 4-2, 4-3, 4-4 and 4-5 a number of observations can be made:

• The high frequency noise is merely an artifact of the deconvolution proces and does not
originate from the rider/bicycle system itself.

• The 4th and 5th peak in both the roll and steering angle response, do not seem to be
very likely and may be caused by noise.

• The signal to noise ratio for the case v = 2.1 m/s is very low, resulting in an unreliable
FIR model.

• The signal to noise ratio of the steering angle response is generally of better quality
than the roll angle response.

• The overall shape of the roll and steering angle responses are similar, but the amplitudes
and time characteristics differ.

• The amplitude of the oscillation decreases as the forward velocity increases.

• The impulse response seems to damp out more quickly as the forward velocity increases.
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Figure 4-6: Output decomposition of the steering angle output y(t) in terms of input related
component G(q)w(t) and remnant component v(t) for a forward velocity of v = 3.2m/s.
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The poor signal to noise ratio for lower velocities is something to remember, when designing
an identification experiment. Here, more and longer measurements are advised to increase
the signal to noise ratio.

4-2-2 Parametric Modeling

Next, the non parametric results will be used to estimate the parameters of the parametric
model structure described in 2. We start of by reintroducing the parametric model structure,
where the human controller is subject of identification. Secondly, we will formulate and solve
the optimization problem, resulting in a set of parameters. Next, parameters space is reduced,
such that only the important parameters remain.

Model Structure

Next we will use the general control structure presented in presented in chapter 2. By com-
bining equations 2-34 and 2-19 we obtain the following parametric model structure:

y(θ) = G(θ)w , G(θ) =
[
Pyw + Pyu (I−K(θ)Pyu)−1 K(θ)Pyw

]
, (4-38)

with bicycle dynamics Pyw and Pyu, human controller K(θ), disturbance input w = w and
output y = [φ, δ]T . Notice that only the human controller model is unknown, while the
bicycle dynamics are known since they are determined a priori. To refresh our memory we
shortly reintroduce the parametric human control model, which is described in section 2-2.
The human controller is presented in equation 2-19, which yields:

K(s) = Gnm(s)Gτ (s)
[
Kφ(s) Kδ(s)

]
,

with neuromuscular lag Gnm and time delay Gτ = e−sτd and where the roll and steering angle
feedback is modeled according to equation 2-16:

Kφ(s) = kφp + kφi s
−1 + kφd s+ kφdd s

2 ,

Kδ(s) = kδp + kδi s
−1 + kδd s+ kδdd s

2 .

Here, the gains k are defined as the model parameters θ.

Parameter Estimation

Next, we will focus on the actual parameter estimation. We start of by introducing the error
criterium, which we like to minimize by adjusting the parameters. Notice that our model has
only one input and two outputs, which makes it a SIMO system. Let us rewrite the general
control description into two separate SISO systems according to:

G(θ) =
[
Gφ(θ)
Gδ(θ)

]
. (4-39)

We could choose to incorporate both outputs in the criterium by assigning weighting values
to the separate output error criterium and sum these up. However, since the rider directly
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excites the steering dynamics, it is expected that the steering angle contains the most direct
information concerning rider action. In addition, the raw FIR model of the roll angle response
contains a lot of noise, which makes it less reliable. Therefore, we choose to neglect the roll
output and build the criterium function around the steering angle. In this case, a logical sum
of squares output error criterium function would be:

VN (θ) = 1
N

N∑
t=1

[(
Ĝδ(q)−Gδ(q,θ)

)
w(t)

]2
, (4-40)

where the difference between the nonparametric and parametric models is weighted by the
input signal w. The initial parameter vector θ0 is determined by a random search method, for
which the lowest criterium score is further optimized by using the lsqnonlin function. This
function is specialized in minimizing non linear least square optimization problems and makes
use of the trust region method. More information this method in particular and optimization
in general can be found in Papalambros and Wilde (2000). The resulting fittings will be
presented in the next subsection. The parameter optimization results in a optimal parameter
vector set according to:

θ̂N = arg min
θ
V (θ) , (4-41)

The parametric modeling is performed for several cases, where the forward velocity takes the
following values: 2.1, 3.2, 4.3 and 7.4 m/s. A great number of initial parameter configurations
where tried, but the models all turned out to be unstable. After evaluating and experiment-
ing with various configurations, it turned out that the presence of time delay was causing
these instabilities. Even for tiny time delays τd = 10−6, the system destabilized, where the
undelayed system is perfectly stable.

This instability in the closed loop response is probably caused by the inverted rider term:
(I−KPyu)−1, which is oberved in equation (2-34). This inversion of the time delay, effectively
results in a time preview, which mixes up causality and causes unstable behavior.

The problem is circumvented in two ways by:

1. Ignoring the time delay by setting it to zero.

2. Approximate the time delay by applying a second order Padé approximation.

the first case is achieved by simply setting τd = 0 and the second by estimating the time delay
according to:

e−τds ≈
1 + 1

2z + 1
12z

2

1− 1
2 + z 1

12z
2 , with z = −τds . (4-42)

While the approximating seems valid for lower frequencies in the frequency domain (figure
4-7), the impulse response shows is poorly estimated (figure 4-8). Since the data is generated
by a number of input impulses, the approximation should be evaluated critically.

After fixing the time delay problems, we also encountered some problems with obtaining a
stable model for the v = 2.1 m/s case. Various parametric configurations where tried, but
none of them led to a stable system response. This may be caused by the following causes:
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Figure 4-7: Frequency response of simple first order low pass filter H(s) = 1/(1 + 0.1s) with
different configurations for the time delay.

Figure 4-8: Impulse response of simple first order low pass filter H(s) = 1/(1 + 0.1s) with
different configurations for the time delay.
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• The FIR model for v = 2.1 m/s is of poor quality, which affects the parametric modeling,
because it is based on the nonparametric results.

• The uncontrolled system dynamics are highly unstable at low forward velocities. Here
the unstable oscillatory weave mode dominates the system dynamics, which may be
hard to control.

Next, we analyze the parametric results that did work out. Figure 4-9 shows the time domain
results for the parametric results for forward velocities of 3.2, 4.3 and 7.4 m/s. Table 4-1
shows the obtained parameter values for the case when τd is set to zero. Figure 4-10 shows
the impulse response functions for both the roll and steering angle response. From figure 4-9
we see that the measured steering response characteristics are being well matched by the model
response. Although the parametric model is fitted purely onto the steering angle responses,
we observe from figure 4-10 that the general characteristics of the roll angle response are also
fitted reasonably well. The three models show high VAF values of above 96%, which is quite
impressive. The largest errors occur at the second and highest peak of the impulse response,
for which the parametric model peak is lower than the nonparametric model.

Remark; at this point we haven’t taking into account the parameter uncertainty, which
may explain for major differences between measurements, where similarities where expected.
Therefore these results are considered to be preliminary and still unreliable. In the next sub-
section we will use the parameter covariance to further reduce our parametric model while
maintaining high VAF values.

Parameter Reduction

Next, we will try to reduce the parameter space, while maintaining high VAF values. To
check whether there is a redundancy in these parameters, we will eliminate the parameters
one by one. Typically, we are looking for a minimum set of parameters, without causing a
big drop in the VAF value.

One way to achieve this would be to try eliminating the parameter one by one for each
reduction step, after which the parameter that causes the smallest drop in VAF will be
permanently eliminated. The process is than repeated until there are no parameters left
or until the VAF drops dramatically. However, a full reduction sequence (in the case of 8
parameters) would require 8! = 40320 optimizations, which is rather a lot since it may require
manual operations.

A more efficient method would be to first eliminate the parameter that affects the error
criterium the least. It can be shown that this is the same as eliminating the parameter with the
largest variance, which already introduced in section 4-1-6 and derived in D. The parameter
covariance is normalized first, by introducing a set of normalized parameters according to:

θ́i = θi/θ̂
N
i , (4-43)

where θ̂Ni is the fixed optimum parameter and θi is the non-normalized parameter. So at the
found optimum, the normalized parameters are all equal to 1 and dimensionless. This makes
the indices of the parameter covariance comparable with each other and allows for reduction
techniques. The diagonal terms of the covariance matrix represent the auto variance, which
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Figure 4-9: Parametric model results for τ = 0
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Figure 4-10: Parametric model impulse responses projected onto the FIR model for τ = 0
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is a measure for parameter uncertainty. A large auto variance means that the parameter
is poorly estimated. If this case, the corresponding parameter forms a suitable candidate
for elimination, since it contributes relatively little to the error criterium function defined in
equation 4-40.

Next we will present a reduction scheme, which is based on the normalized parameter auto
variance. For each reduction step, the parameter with the largest autovariance is eliminated
by setting it to zero. The parameter optimization described in section 4-2-2 is then repeated
for the reduced set of parameters. Next, the parameter covariance matrix for the reduced
set of parameters is estimated, after which another parameter is eliminated. This process is
repeated until the VAF drops dramatically (below 50%), since the results do not make sense
anymore.

Figures 4-11, 4-12, 4-13 and 4-14 show the iterative normalized parameter covariance results.
The corresponding parameters and VAF values are presented in table 4-1. These results will
be discussed in the next section.

Remark; the covariance theory assumes an error which is according to a white noise distribu-
tion. However, since we removed the noise at an early stage (non-parametric modeling) these
assumptions do not hold and result in an underestimation of the true parameter covariance.
This is not and issue for the parameter reduction, since only the relative covariance is of im-
portance here and not the absolute (underestimated) covariance. Later on we will derive the
unbiased covariance for the frequency domain by using a separate noise model and analytic
parameter sensitivity expressions.

Finally, we present the impulse response function for the reduced parametric model at v = 3.2
m/s, for which the specific gain contributions are calculated. These results are shown in figure
4-15 and will be discussed in the next section.
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Figure 4-11: Subsequent parameter covariance matrices after iterative parameter reduction.
The parametric model is based on a forward velocity of v = 3.2 m/s and the time delay is set
to τd = 0. The parameter space is reduced by one for each iteration until the VAF value drops
down dramatically.
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Figure 4-12: Subsequent parameter covariance matrices after iterative parameter reduction. The
parametric model is based on a forward velocity of v = 3.2 m/s and the time delay is estimated
using a 2nd order Pade approximation. The parameter space is reduced by one for each iteration
until the VAF value drops down dramatically.
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Figure 4-13: Subsequent parameter covariance matrices after iterative parameter reduction.
The parametric model is based on a forward velocity of v = 4.3 m/s and the time delay is set
to τd = 0. The parameter space is reduced by one for each iteration until the VAF value drops
down dramatically.
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Figure 4-14: Subsequent parameter covariance matrices after iterative parameter reduction.
The parametric model is based on a forward velocity of v = 7.4 m/s and the time delay is set
to τd = 0. The parameter space is reduced by one for each iteration until the VAF value drops
down dramatically.
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Figure 4-15: Impulse response of the parametric model. Top: roll angle response. Middle:
steering angle response. Bottom: steering torque response, decomposed into the separate gain
parameter contributions.
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4-3 Analysis

In this section the resulting parametric models are further analyzed. First an eigenvalue
analysis is performed for the reduced rider models where the time delay is omitted (td = 0 s).
In addition, some observations concerning the parametric results are made, for which possible
explanations are introduced and discussed.

4-3-1 Eigenvalue analysis

The eigenvalues for the selected reduced parametric models are all calculated and shown in
table 4-2. The positive part of the resulting eigenvalues are all negative, which indicates
stability. Further more we observe that the state has increased from 4 to 7 dimensions. Here,
one state is added due to the integrative feedback action on the steering angle. The other
two states are added due to the neuromuscular activation dynamics Gnm, which acts as an
second order low pass filter on the controller output.

K(s,θ(v = 3.2)) K(s,θ(v = 4.3)) K(s,θ(v = 7.4))

λ

−22.76 −25.08 −36.57
−1.70 −11.53i −2.31 −13.12i −2.18 −17.86i
−1.70 11.53i −2.31 13.12i −2.18 17.86i
−1.40 −5.25i −1.88 −5.76i −1.93 −7.26i
−1.40 5.25i −1.88 5.76i −1.93 7.26i
−1.16 −2.60i −0.99 −2.99i −1.27 −2.91i
−1.16 2.60i −0.99 2.99i −1.27 2.91i

Table 4-2: Closed loop eigenvalues λ = eig(G(s,θ)) for the selected reduced parametric models,
where τd is set to zero.

4-3-2 Observations

When analyzing the parametric results, the a number of observations are made, for which
possible explanations are discussed. However, again we’d like to point out, that the parame-
ter uncertainty is underestimated, therefore no hard conclusions should be made concerning
the exact parameters. However the reduced parameters models seem to converge seemingly
well, making them the most interesting to compare between different measurements. When
analyzing table 4-1 the following observations can be made:

• The steer into the fall principle is observable in the positive roll angle and rate feedback
for all measurements. From figure 4-15 we observe that the roll perturbation only results
in a initial roll velocity. Therefore, the roll rate feedback dominates the initial response,
which is key to stabilizing the system. At t = 0.2s the roll angle reaches an inital peak,
for which the roll feedback gain start to kick in. The combined roll angle and rate
feedback result in the stabilizing steer into the fall mechanism, which is also described
in section 2-1-3.
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• The roll angle, roll rate, steering rate and integral action are the key contributers and
cannot be removed without causing a major drop of the VAF value for any case. Removal
of any of these parameters results in instability, which is no feasible result, since the
measured bicycle/rider configuration is observed to be stable.

• Parameter reduction affects the parameter values relatively to the unreduced parame-
ters, but all the signs remain conserved. This is probable due to the off-diagonal terms
observed in the parameter covariance matrices, which indicate parameter dependency.
If a parameter is removed, the dependent parameters may fill up the empty parame-
ter space, which may explain for the parameter variations through the reduction steps.
This might be solved by introducing an orthogonal parameters set, for which the least
contributing parameters can be eliminated, without affecting the other parameters due
to orthogonality.

• The integrative steer action acts as a negative super-spring (integral of spring force
over time) on the steering angle. Analysis of the bicycle equations shows that this time
integral of the steering angle is roughly proportional to the heading angle. This can be
shown integration of equation 2-3, which describes the heading rate of the bicycle:

ψ̇ = vδ + cδ̇

w
cos(λ) . (4-44)

for which the heading is obtained through integration over time and can be approxi-
mated by elimination of the relatively small steering rate terms:

ψ =
∫
vδ + cδ̇

w
cos(λ) dt , (4-45)

ψ ≈ v

w
cos(λ)

∫
δ dt (4-46)

From this we observe that steering integral action acts proportionally to the heading
angle. As the heading angle increases, the rider exerts more steering torque in the same
direction. By doing so, the rider effectively applies a counter steering action mechanism,
resulting in a turn in the other direction. Concludingly, the steering integral action
acts as controller on the heading angle. This heading control is necessary, since the
experiment was performed on a rather narrow horse treadmill, allowing only for little
changes in heading an lateral displacement.

• The parameter reduction method increases the VAF/number-of-parameters ratio signif-
icantly. However, reducing the parameter space to much leads to instability, resulting in
near zero VAF values. Apparently, the remag parameters are crucial to bicycle stability.

• The presence of time delay only results in a minor increase of VAF. However, it does
affect the value of the estimated parameters significantly. When comparing the reduced
set of parameters, shown in table 4-1 and measured at v = 3.2m/s (same experiment) for
both cases, we observe changes of up to 30% between similar parameters. Apparently
the absence of time delay, is being compensated by adjusting the parameters.

These parametric results will prove to be useful in subsequent analysis, where a frequency
domain experiment will be set up.
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Figure 4-16: Resulting first peak output response of the steering angle due to perturbation
impulse. The net impulse is estimated by calculating the shaded area of the force perturbation.

4-3-3 Non-linear scaling check

Next, we will check wether the system output scales linearly with the input power. This is done
by analyzing the ratio between the net impulse and corresponding steering angle peak response
for each separate perturbation. First, we obtain a measure of the net impulse by numerical
integration of the force for each impulse. Next, we derive the first peak amplitude of the
corresponding steering angle resonse. A simple Matlab algorithm is written to automatically
perform these operations, for which an example result is shown in figure 4-16. The resulting
first peak response versus net impulse is shown in figure 4-17. The check is also performed
for other forward velocities, for which the results looked more or less the same. From this
initial check, it appears that the linear scaling approximation holds reasonably well. However,
since the noise levels are rather high, more experiments with varying input amplitudes are
recommended.
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Figure 4-17: Resulting first peak output response of the steering angle versus net impulse. The
standard deviation of the output response is indicated with the gray vertical lines and indicates
uncertainty. For a linear system this relationship should scale linearly, which appears to be roughly
the case. Notice that the trend line does not fully intersect with the origin, which may either be
due to noise or non linearity.

4-4 Summary

First, a limited amount of system identification theory is presented, which focuses mainly
on linear time and frequency domain methods. The output data can be decomposed using
nonparametric techniques into a part which can be linearly correlated to the input and a
uncorrelated part called the the remnant. These nonparametric results are often used as a
noise reduced model, which may serve as a base for parametric model identification. The
parametric model identification requires a data set, model structure and error criterium, for
which a optimal parameter set can be found using optimization algorithms.

Next, nonparametric methods are applied onto the obtained experimental dataset, which is
introduced in the previous chapter. The analysis is performed for different forward velocities
of 2.1, 3.2, 4.3 and 7.4 m/s. A non parametric FIR model is chosen to obtain the noise reduced
input related response, and is obtained for both the roll and steering angle response with the
force disturbance being the input. The obtained roll responses where of all of poor quality,
rendering these useless for subsequent analysis. Fortunately, the impulse response models for
the steering angle response where of much better quality. The shape of FIR responses shows
a lot of similarity, but the amplitude and time characteristics seem to change as a function
of the forward velocity v. In addition, a noise model is also obtained, which will prove to be
useful in subsequent chapters.

Finally, the nonparametric models serve as a noise reduced base for the parametric models
presented in chapter 2. These models are fitted by minimizing the sum of errors squared
between the non parametric and parametric steering angle responses. There where stability
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issues with the time delay, which is solved by setting it either to zero or by Pade approxima-
tion. After fixing the stability issue, the resulting VAF values are around 97% for different
forward velocities, which is quite good. The parameter space is reduced by eliminating the
least contributing parameters. By doing so, the parameter space is reduced from 8 up to 4
parameters, while the VAF only drops from 97.56 to 94.24 % for the v = 3.2 m/s case. When
analyzing the reduced parameter results we make the following observations:

• The steer into the fall principle is observable in the positive roll angle and rate feedback
for all measurements.

• The roll angle, roll rate, steering rate and integral action are the key contributers and
cannot be removed without causing a major drop of the VAF.

• The integrative steering action controls the heading by applying counter steering.

The nonparametric and parametric results will prove to be useful in subsequent analysis,
where a frequency domain experiment is set up.
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Chapter 5

Experiment Design

Now that we have obtained a model of the rider action, we can start setting our own freqency
domain experiment. This frequency domain experiment allows for frequency domain methods,
which provides certain advantages over time domain methods. For example, exciting the
system by using multi sine perturbations allows for specific control of the input bandwidth
and power.

This chapter starts by stating the goal of experiment design. Next, a number of possible
closed loop identification methods are presented. Secondly, the measurement settings are
determined, which include settings such as the measurement time and sampling frequency.
Thirdly, a multisine input signal will be defined in terms of spectral and spatial excitation.
The next section focuses on some important issues concerning man machine identifcation
experiments. Finally, a simulation study is set up to check wether the designed experiment
is truly informative enough.

5-1 Goal

The goal of experiment design is to generate an informative dataset on which system identifi-
cation procedures are applied. The dataset is said to be informative when the characteristics
of the system subject to identification are well observable in the generated data. Since we
are interested in parametric modeling, we like to estimate these parameters as accurate as
possible. This means a low (normalized) parameter variance matrix, which is a measure for
the accuracy of the estimated parameters with respect to the true parameters. The inverse of
this parameter covariance matrix is known as the Fisher information matrix. So minimizing
the parameter covariance is equal to maximizing the information matrix. The volume of the
information matrix is given by its determinant, which is a measure for the available informa-
tion. In short; creating an informative experiment is done by maximizing the determinant of
the information matrix. Or in terms of the covariance; by minimizing the determinant of the
normalized parameter covariance. More information on this subject can be found in Ljung
(1987).
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5-2 Closed loop identification methods

Next we analyze closed loop identification methods according to Ljung (1987). Lets start
of by reintroducing the general control block description from chapter 2, which is shown in
figure 5-1. From this we observe that the ’unknown’ human controller K acts as a closed

P

K
yu

w z

Figure 5-1: Block diagram of the general control description, with known bicycle dynamics P,
unknown controller K, disturbance input w, error output z = −φ, control input y and control
output u.

loop regulator, which requires closed loop methods for the identification process. According
to Ljung (1987), there are three possible methods for estimating a closed loop regulator,
namely:

1. The Direct Approach: Apply the basic prediction error method in a straightforward
manner: use the rider input y and output u in the same way as for open loop operation,
ignoring any possible feedback, and not using the external input w.

2. The Indirect Approach: Identify the closed loop system from external input w to out-
put y, and retrieve from that the open loop system, making use of the known bicycle
dynamics.

3. The Joint Input-Output Approach: Consider y and u as outputs of a system driven by
w (if measured) and noise. Recover knowledge of both the system P and regulator K
from this joint model.

Method 2 only requires measurement of the external input w and bicycle output y in com-
bination with knowledge of the bicycle dynamics. Fortunately, the bicycle equations are well
established, which makes this method easy to implement. However, since this method esti-
mates the parameters indirectly, the parameters sensitivity is generally poorer compared to
direct methods, such as method 1 and 3. While these direct methods are more sensitive in the
parameters, these also require measurement of both the rider input u and output y. Method
1 can be used to estimated the controller K directly, without knowledge of the external input
w. Method 3 can be used to estimate both the system P and controller K, whenever the
external input w is known.

Methods 1 and 3 require rider output u, for which measurements are experienced to be
troublesome (van den Ouden, 2011). On the other hand, we have a pretty solid model of the
bicycle dynamics P, which is required by method 2. Despite the reduced parameter sensitivity,
the indirect approach (method 2) is chosen, because of the relative easy implementation. Later
on, we will quantify the parameter observability, to assure our experiment is informative
enough.
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Concludingly, method 2 is the preferred method, where y and w are obtained from experiment
and P should be determined a priori.

5-3 Frequency domain identification method

In this section a frequency domain identication method is proposed. The identification pro-
cedure will split up into a non parametric model idenfication and parameteric model iden-
tification. The approach is method will be similar to the one described in section 4-2, but
now we introduce frequency domain methods in stead of time domain methods. Since the
rider action is presumably observable in the steering angle response, we will perform the
identification onto the steering angle response only, so G = Gδ.
Next, we shorly restate the most important frequency domain expressions, which are already
introduced in chapter 4. Lets start of with the non parametric frequency domain response,
which is given by:

ĜN (eiω) =
Φ̂N
yw(ω)

Φ̂N
w (ω)

. (5-1)

In this case, the estimated transfer function can be used to estimate the disturbance spectrum,
according to:

Φ̂N
v (ω) = Φ̂N

y (ω)− |ĜN (eiω)|2Φ̂N
w (ω) . (5-2)

These results serve as an base for the parametric modeling, for which the common frequency
domain criterium is given by:

VN (θ) = 1
N

N∑
k=1

∣∣∣ĜN (eiωk)−GN (eiωk,θ, θ)
∣∣∣2 Φ̂N

u (ωk)
Φ̂N
v (ωk)

, (5-3)

which corresponds to a optimization problem for which an optimal parameter can be found
according to:

θ̂N = arg min
θ
VN (θ) , (5-4)

and for which the parameter covariance yields:

cov θ̂N = 1
N

[ N∑
k=1

GT
,θ(eiωk , θ)Φ̂N

w(ωk)
Φ̂N

v (ωk)
G,θ(eiωk , θ)

]−1

. (5-5)

This covariance expression is something which we like to minimize, since a smaller covariance
results in to a more accurate set of parameters.

5-4 Measurement settings

The measurement settings consist of the sampling frequency fs and measurement time T .
Together they determine the number of measured samples N according to:

N = T/Fs (5-6)
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From a computational point of view, it would be nice if N would be some power of 2, since
that allows for the most efficient IFFT.

The measurement frequency forms an upper bound for the maximum observable frequency,
which is simply calculated as:

fn = fs/2 , (5-7)

where the upper bound fn is called the Nyquist frequency. As an rule of thumb, this frequency
should be 10 times higher than the highest system dynamics of interest. Since the fastest
human control dynamics are roughly around 3 Hz, the sampling frequency should be at least
60 Hz. However, since storage capacity is not a real issue anymore, we set the sampling
frequency to 200 Hz, which definitely should be high enough.

The measurement time determines the frequency resolution and also the accuracy of the
measurements. When analyzing the covariance expression stated in equation 5-5, we observe
that the covariance is proportional to 1/N . Since T is proportional to N , the covariance
indeed decreases for longer measurements. However, longer measurements are also more
sensitive to time varying systems. These time variant behavior may very well occur in man-
machine interactions. For example, after a while the human controller may optimize its
control strategy, which is called the learning effect. In addition, psychological phenomena like
tiredness, boredom, etc. may also occur if the measurements are taking to long. We think
that a reasonable measurement time would be around T = 180s, which corresponds to three
minutes of active bike balancing.

In section 2-2 we stated that the parameters are a function of the forward velocity. We
also know from section 2-1 that the bicycle dynamics change as a function of the forward
velocity. The major changes in bicycle dynamics typically take place between 3 and 6 m/s.
To safely encapsulate these interesting changes in dynamic behavior, the experiment should
be performed at forward velocities between 2 and 7 m/s with a 1 m/s interval.

5-5 Input signal design

Next we will focus on designing a proper input signal. This signal should be designed such
that an informative dataset is generated. The following points should be considered when
designing an input signal:

1. Spectral excitation: the input frequency bandwidth should be chosen such that it excites
the human controller action sufficiently.

2. Spatial excitation: the input should be placed such that it excites the interesting system
dynamics.

3. The input power should be scaled such that a good signal to noise ratio is achieved,
while maintaining reasonable safety margins.

4. The input signal should appear to be random to the human controller, in order to
prevent possible feed forward control.
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A particular signal type which fulfills these requirements is given by the crested multi sine.
This signal may be constructed in the frequency domain by specifying input power as a
function of frequency. An algorithm then optimizes the phase such that a minimal crest
factor (peak to average power ratio) in the time domain is achieved. This frequency domain
signal is then transformed to the time domain using an inverted Fourier transformation. This
results in the desired input signal which can be used for simulations and experiments.

5-5-1 Random multi sine

According to R. Happee, a randomly appearing signal can be created by superimpossing 5
or more sines at different frequencies. For this experiment a multi sine consisting of 10 sines
will be used to excite the system. These frequencies should lie on the frequency grid, which
is formed by an integer number times the frequency resolution ∆f = 1/T . The multi sine
should be crested, which that means that the phase is optimized such that the resulting peak
to average ratio is low. More information about input signals in general and crested multi
sine generation can be found in the appendix B.

5-5-2 Spatial excitation

Next we analyze the spatial placement of the input signal. From chapter 2 we know that the
bicycle has two generalized inputs, namely generalized roll and steering torque. Therefore, in
order to estimate the complete system, we should apply at least two inputs en perform two
measurements. However, since we are particularly interested in roll stabilization, we will only
focus on that part of the system which corresponds to the external roll torque response. In
addition, the steering disturbance is less interesting, since it could be affected by applying co-
contraction. By using co-contraction, the human controller is physically capable of creating
an effective spring and damper acting on the relative steering angle, which makes the control
rather trivial and less interesting. While steering torque input may trigger co-contraction,
the roll torque input does not, because the human controller has no physical means to create
an effective spring and damper acting on the roll angle. So the spatial excitation consist of
one output w(t), which exerts the bicycle equations according to:

fe = Hfww , with: Hfw =
[
1
0

]
(5-8)

In chapter 6 we will focus on how to generate a generalized roll torque, without exciting the
steering torque.

5-5-3 Spectral excitation

According to Ljung (1987) the input bandwidth can be determined by analyzing the estimated
parameter covariance. Here, the input signal should be chosen such that it results in a low
parameter covariance, which means that the parameters can be estimated more accurately. It
is preferable to excite those frequencies where the estimated parameters are the most sensitive.
To analyze the parameter sensitivity, the reduced parameteric model structures obtained in
chapter 4 will be used to determine the model sensitivity in the frequency domain. The
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model paramater sensitivities are calculated by using the Matlab symbolic toolbox. In order
to achieve this a function called (sys2sym) is written, which can convert almost any transfer
function object to a symbolic expression as a function of the symbolic Laplace operator. The
rider model is also symbolically parameterized and together with the bicycle equations we can
derive the symbolic closed loop transferfunction Gδ(s, θ), which is stated in equation 2-34.
Next we take the partial derivative of Gδ(s, θ) with respect to the parameters, which results
in the model parameter sensitivity function Gδ,θ(s, θ). The resulting parameter sensitivities
for different forward velocities are obtained and shown in figure 5-2, 5-3 and 5-4.

From these figures we observe that the models are most sensitive around 0.2 to 4 Hz. There-
fore the following input frequency (fbw) bandwidth is chosen to encapsulate the observable
controller dynamics:

{0.2 < fbw < 4} [Hz]. (5-9)

The input signal will be applied at 10 equally spaced points on the frequency grid, which is
stated in section 5-4. The resulting input frequencies fw thus become:

fw =



0.020
0.061
0.103
0.145
0.186
0.228
0.270
0.311
0.353
0.395


Hz . (5-10)

Concludingly, we have determined the input frequencies by analyzing the model parameter
sensitivities in the frequency domain.

5-5-4 Input power

The power of the perturbation signal should be scaled such that a good signal to noise ratio
for the output is achieved, while keeping the geometric nonlinearities small and (e.g. small
angles). These small angles also ensure safety, since large roll deviations may cause the
system to fall over. At first we where thinking to design the excitation power such that it
would correspond to a certain maximum roll angle deviation. For which a reasonable maximal
roll angle approximation would be around 10 degrees or 0.1745 radians of roll angle. However,
during the of the perturbator (chapter 6) we realized that the input power is limited by the
perturbator design and not the maximum desired roll angle output. Therefore we decrease
the input power, so the maximum roll angle deviation of 0.1745 is never reached. After a
process of trial and error, the maximum input torque is set to 40N/m which corresponds
roughly to a mass of 4kg with a lever arm of 1m. The corresponding auto spectral density of
the input will be scaled such that this maximum input amplitude is not exceeded.
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Figure 5-2: Squared sensitivity for the reduced parametric model at a forward velocity of v =
3.2m/s for the steering angle |∂Gδ/∂θ|2.

Figure 5-3: Squared sensitivity for the reduced parametric model at a forward velocity of v =
4.3m/s for the steering angle |∂Gδ/∂θ|2.

Figure 5-4: Squared sensitivity for the reduced parametric model at a forward velocity of v =
7.4m/s for the steering angle |∂Gδ/∂θ|2.
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5-5-5 Input signal design

Finally, the measurement settings, 10 band multi sine cresting, desired frequency bandwidth
and maximum input amplitude are combined into one input spectrum Φw(ω). This spectrum
will be the same for all forward velocities, since its input power is limited by the perturbator
design, which independent of the forward velocity. The resulting spectrum is shown in figure
5-5 and will be used for future simulations, covariance estimation and during the design of
a perturbator. The time domain representation is shown in figure 5-6, which shows that the
input signal is scaled such that the maximum amplitude of 40Nm is not exceeded.

5-6 Measurement Considerations

Without going into to much detail, some aspects about future rider identification experiments
are presented and discussed in this section. For example, a clear task instruction is believed
to be of key importance, since it affects the control behavior. Non-linearities may also be
present in the underlying system, which could be identified by experimenting with different
levels of input power.

5-6-1 A priori measurements

Apart from the perturbation experiment, some additional information about the bicycle and
subjects in particular should also be gathered. For example, it would be interesting to known
the gender, age, bicycle experience for each subject. In addition, we also need to know the
inertial properties of the subjects, so their weight and dimensions should also be measured.
This should also be done for the bicycle, where we want to know the exact dimensions and
inertial properties to derive a proper bicycle model.

5-6-2 Environment

The experimental data presented in chapter 3 was obtained from experiments performed on
either a treadmill or at the pavillion floor. From the treadmill data we already observed
control action on the heading, which is due to the rather narrow track. The pavillion floor
was rather small, which forces the rider to ride in circles. From these experiments, it becomes
clear that the enviroment may also affect the rider behavior. This is generally not desired,
since we are actually interested in pure roll stabilization. So for these experiments it is
recommended to perform the experiments on a rather large, flat and open surface. Perhaps
an unfinished highway or old runway might serve for this. In addition, the measurements
should be performed during good weather conditions, where the wind excitation is low.

5-6-3 Task instruction

The task instruction determines the goal of control. According to Mugge et al. (2007), the
following task descriptions are identified in human control:
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Figure 5-5: Auto spectral density of the input signal Φu as a function of frequency. The input
power is equally divided between 10 sines between 0.2 and 4 Hz. The phases of the underlying
signal u(ω) are randomized, such that the maximum output amplitude in the time domain of u(t)
is minimized.

Figure 5-6: Time domain representation of the input signal w(t). The signal is scaled such that
the amplitude does not exceed the maximum tress hold of 40Nm.
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• Relax (do nothing)

• Maintain a constant force (or torque)

• Maintain a constant position (or angular rotation)

• Daily life task (e.g. walking)

In our case, we are interested in roll stabilization during force perturbation. This corresponds
to a position task, where the subject should be instructed to maintain zero roll angle. In
addition, since we are not interested in heading control, the subject should also be explicitly
instructed not to control the heading.

5-6-4 Number of trials and subjects

Each subject should perform perturbation runs for forward velocities of v = 2, 3, . . . , 7 m/s.
In addition some extra runs may be requested to identify non linearities, which is discussed
in the next section. The number of subjects is yet to be decided, where more subjects may
reveal clearer correlations.

5-6-5 Detection of non linearities

Although all of the described analysis is of linear nature, there still might be non-linearities
present within the system. These non-linearities could be caused by geometrical non linearities
and/or non linear rider control.
To identify whether scaling non linearities are present, it is recommended to repeat the mea-
surements with different degrees of input power. These non linearities could be due to geo-
metrical non linearities, but also due to non linear rider control. For example, Doyle (1988)
describes an intermittent control mechanism on the roll angle, which only kicks in after a
certain roll angle is exceeded.
From the previous chapter, we learned that the remnant noise model v(t) describes the part
which can not be correlated linearly to the input. This means that the remnant could either
be due to stochastic properties of the system or may be caused by non linearities in the
underlying system. However, it is hard to point from which source this remnant exactly
originates from.
A possible solution would be to perform the measurements several times at different levels of
input power. Here, the input could be scaled, such that input torque gradually build up to
max |w(t)| = 20, 40 and (if possible) 60 Nm. By doing so, we might be able to detect, which
parts of the response scale up linear and which parts do not. Therefore, it is recommended
to repeat at least some of the measurements with different levels of input power.
In addition, it would also be interesting to perform some zero input (non perturbation)
experiments, which could be used to obtain the noise model. This noise model, could then
be compared with the noise model obtained from the perturbation experiments, to check
whether the noise is input dependent.
To check for input signal related non linearities, it would be interesting to experiment with
various input signals, such as step inputs, impulses and multisines. However, for the moment
we will only focus on the multisine case.

P.D.L. de Lange Master of Science Thesis



5-7 Expected parameter accuracy 63

Model σ̄kφp σ̄kφd σ̄kφdd σ̄kδp σ̄kδi σ̄kδd

K(s,θ(v = 3.2)) 58.10e-6 6.64e-6 35.59e-6 9.55e-6
K(s,θ(v = 4.3)) 182.32e-6 42.81e-6 157.33e-6 88.23e-6 67.09e-6 79.85e-6
K(s,θ(v = 7.4)) 173.69e-6 15.51e-6 87.07e-6 20.43e-6

Table 5-1: Normalized SEM values σ̄k for the reduced parametric models. The actual (non
normalized) SEM σk can be calculated according to σk = σ̄k, where k represent the parameter
values.

5-7 Expected parameter accuracy

To check whether the experiment design is informative enough, we will calculate the Standard
Error of the Mean (SEM), which is defined as the square root of the diagonal indices of the
covariance matrix. The SEM is not completely accurate, since it omits the off diagonal terms
of the covariance matrix, but generally it does provides a usefull indication of the individual
parameter accuracy. By combining the model sensitivity and input power described in section
5-5 and noise model obtained in section 4-2-1, we can substitute for the parameter covariance
expression, which is stated in equation (5-5). The resulting SEM values are normalized with
respect to the parameter, for which the resulting normalized SEM values are shown in table
5-1.

The resulting normalized SEM values are all around an order of 1e-5, which corresponds
to an accuracy of 0.001%. This is incredibly accurate, which makes these results hard to
believe. As said before, the SEM is not completely accurate, since the off diagonal covariance
terms are omitted. Since these off diagonal terms add extra uncertainty, the SEM provides
an underestimated indication of the parameter covariance. In the next section, a simulation
study is set up, where we will check whether these rather low SEM values are realistic.

5-8 Simulation

The designed input signal is tested by simulating the output response. Here, the deterministic
contribution is generated by simulating the parametric model, using the designed input signal.
The stochastic contribution is modeled according to the non-parametric noise model obtained
in section 4-2-1. This results in a simulated dataset, consisting of input w(t) and output y(t),
and allows for system identification. These signals are shown in figure 5-7 for a forward
velocity of v = 3.2m/s. The deterministic contribution is generated by making use of the
reduced parametric model for v = 3.2 m/s. This model will also be subject of identification,
which is described later on within this section. From these results we observe that the
maximum roll angle is around 0.05 rad, which corresponds to 3 degrees of rotation. The
maximum steering angle response is around 0.2 rad, which is roughly 10 degrees. These
angles are rather small, which ensures both linearity and safety at the cost of a decreased
signal to noise ratio.

Using frequency domain identification techniques we can obtain the spectral estimates of
the underlying closed loop models. Unlike the impulse response experiments, the system is
only excited for 10 specific frequencies between 0.2 and 4 Hz. Therefore it is only possible
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Figure 5-7: Simulation of the roll angle φ (top), steering angle δ (middle) using input w (bottom)
for a forward velocity of 3.2 m/s.
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Figure 5-8: Bode plot for the true G0(ω) and estimated GN (ω) transfer function for the input
w to roll angle φ response.

to derive the estimated transfer function for a limit number of frequencies and not for the
complete bandwidth. The estimated transfer function can be compared to the ’true’ system,
which was used to generate the simulated output data. This can be useful for validating
the method of identification, estimating the accuracy of the obtained data set and analysis
of the By comparing the spectral estimates with the ’true’ system, which we have obtained
in the previous chapter, we can analyze the quality of the spectral estimates. The true and
estimated closed loop transfer function for both the roll and steering angle are shown in figure
5-8 and 5-9 respectively. Here, we observe that the estimated transfer function matches the
true transfer function almost perfectly. Only around the upper bound of the input frequencies
we observe some minor differences, which is probably due to the reduced signal to noise ratio
at higher frequencies.

The noise model can be obtained from those frequencies, where no excitation is applied. For
these frequencies, the noise spectrum simply equals the output spectrum, so Φv = Φy, since
G(ω)u(ω) is zero at these frequencies. By averaging and interpolation we can also estimate
the noise at the excitation frequencies. The obtained noise model can be used for parameter
estimation procedure, where the signal to noise ratio is used to assign weighting factors to
each frequency.

Next, the estimated transfer function is used for frequency domain parameter estimation.
Here we would like determine the parameters of the reduced 4-parameter model for v = 3.2
m/s. This is achieved by using frequency domain parameter estimation techniques from
chapter 4. The estimated set of parameters is shown in table 5-2, where they are compared
with the true set of parameters. From these results we observe that the errors are all rather
small, but considerably (±100 times) larger than the SEM values predicted in the previous
section. We already stated that the SEM underestimates the parameter variance, but a factor
100 is rather a lot. Still the simulation results are satisfactory, since the true parameters are
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Figure 5-9: Bode plot for the true G0(ω) and estimated GN (ω) transfer function for the input
w to steering angle δ response.

Symbol θ0 θ̂N (θ0 − θ̂N )/θ0

kφp 36.7135 36.6692 0.0012
kφd 32.9633 32.5039 0.0139
kδi 89.2661 86.7232 0.0285
kδd −3.2486 −3.2466 0.0006

Table 5-2: Comparison between ’true’ parameters θ0 and estimated parameters θ̂N for the
reduced model where the forward velocity is set to v = 3.2m/s. The error is normalized with the
true parameters and indicates the error. The maximum error for this simulation experiment is
around 10%.
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estimated with 0.6 to 2.8 % accuracy. However, this simulation study is purely linear, whereas
in reality non linear and time varying effects will have a negative impact on the parameter
accuracy.

5-9 Summary

The goal of the experiment will be to determine the parameters as accurately as possible.
This can be achieved by designing the experiment, such that the estimated covariance is as
low as possible. The covariance can be minimized by longer measurements, more input power
and excitation at the parameter sensitive frequencies.

A number of closed loop identification methods are presented of which the indirect approach
is chosen. Here y and w are obtained from experiment and G should be determined a priori.
The method is easy to implement, and allows for commonly used open loop identification
methods.

The experiment should be recorded at a measurement frequency of 200 Hz, which corresponds
to a time resolution of ∆T = 0.05 s. The measurement length is set to N = 215 samples,
which corresponds to a total measurement time of T = N∆T = 163.84 s. The experiment
should be performed at forward velocities of v = 2, 3, . . . , 7 m/s, since the dynamic behavior
is velocity dependent.

A disturbance input signal has also been designed, and should be applied as a generalized
roll torque to the system. In order to prevent feed forward control, the input signal should
be appear to be random, which can be achieved by superimposing 5 multi sines or more.
The input bandwidth ranges from 0.2 to 4 Hz, and the input power is scaled such that
max |w(t)| = 40 Nm. The resulting input signal is shown in figure 5-5 and 5-6.

It is important that the subject is properly instructed prior to the experiment, since task
type affects the control action. In addition, the environment may also affect the rider control,
which is observed in previous experiments. In our case, the subject should be instructed to
maintain a zero roll angle, i.e. balancing in an upright position.

As final test, a simulation is performed for the case of 3.2 m/s, where the newly designed
input signal is used for simulating the bicycle/rider model derived in chapter 4. The resulting
response shows a maximum roll angle of 3 degrees and maximum steering angle of 10 degrees.
Next, the simulation data is used for non parametric and parametric model estimation in the
frequency domain. The estimated parameters where found to be in good agreement with the
’true’ parameters, although the accuracy was poorer than the expected SEM.
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Chapter 6

Perturbator Design

In this chapter we will focus on designing mechanisms that are capable of applying a pure
roll torque to the combined bicycle/rider system. This is a challenge, since the roll torque is
defined relatively to the external world, where is no physical connection, except for the rear
and front wheel contact points. The goal is to design a perturbator which is able to generate a
generalized roll torque Tφ, without exciting the steer torque Tδ, which is equal to the desired
perturbation signal w(t) described in chapter 5. In this chapter we will present and analyze a
number of perturbator designs, for which one design will be chosen for further development.

All perturbator designs will be formulated in the perturbation plane, which is shown and
defined in figure 6-1. By doing so, only a generalized roll torque is exerted, since any force
applied within this plane is orthogonal to the generalized steering torque.

The general approach is to only model the perturbator dynamics, which will interact with
the bicycle through the roll reaction torque −Tφ. The steering angle is omitted here, since we
assume that the perturbation takes place in the perturbation plane, which is orthogonal to
the steering angle. The perturbator may introduce some degree of freedom x, which interacts
with the rider/bicycle equations. In this case, we generally end up with a system of following
kind: [

m11 m12
m21 m22

] [
φ̈
ẍ

]
+
[
c11 c12
c21 c22

] [
φ̇
ẋ

]
+
[
k11 k12
k21 k22

] [
φ
x

]
=
[
−Tφ
fx

]
(6-1)

with roll angle φ, some perturbator related degree of freedom x, mass, damping and stiffness
coefficients mij , cij , kij , roll torque Tφ and external input fx corresponding to x. Here the
roll torque is defined negatively with respect to φ since it describes a reaction torque.

From equation 6-1 we observe that the roll torque depends on both φ and x. The part that
is related to the roll angle φ we call the passive system contribution, since this is the part
that affects the bicycle dynamics when the perturbator is inactive x(t) = 0. The passive
system contribution is given by the coefficients: m11, c11 and k11, which add up to the roll
angle equation in chapter 2. The remaining part related to x, we call the active system
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Figure 6-1: Perturbation plane; any force applied within this plane can only exert a generalized
roll perturbation. The plane is spans the lateral y and longitudinal z direction and intersects with
the forward x direction at the rear wheel contact point. This is the plane in which the perturbator
will be designed.

contribution, and is given by the coefficients: m12, c12 and k12. The active part will mainly
be used to induce the desired perturbation signal w(t).

As said, the goal of the perturbator is to apply a generalized roll torque Tφ, which should
be equal to the required disturbance torque w(t). However, we could also accept that the
perturbator changes the bicycle dynamics in a passive way, by only setting the active system
contribution equal to w(t). This is preferable since w(t) only depends on x, which means we
can determine the desired perturbation configuration x(t) a priori. In this case, the required
frequency spectrum of x is obtained through:

x(ω) = 1
−ω2m12 + iωc12 + k12

w(ω) , (6-2)

where w(ω) is input spectrum and for which x(t) can be obtained by taking the inverse Fourier
transform of x(ω).

Next we will analyze the second row of equation 6-1, which describes the perturbator dynam-
ics. Here, the m21, m22, c21, c22, k21 and k22 coefficients describe the perturbator dynamics
and how the perturbator should be activated through fx. These coefficients can be used to
determine the required perturbation torque and power. By setting φ = 0, we obtain the the
active system contribution fx is determined by x(t) and m22, c22 and k22, according to:

fx(ω) = −ω2m22 + iωc22 + k22x(ω) , (6-3)

And the required perturbation power Px is defined as the force times velocity, resulting in:

Px(t) = fx(t)ẋ(t) , (6-4)

where we make use of ẋ(ω) = iωx(ω), which can be transformed to the time domain, by taking
the inverse Fourier transformation of the corresponding signals These time domain results
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may be used to determine the requirements on the perturbator force, such as maximum force,
power output, displacement amplitude, velocity requirements, etc.
In the succeeding sections, we will analyze a number of perturbator designs.

6-1 Design of a swing perturbator

The swing perturbator uses a mass unbalance which hinges above the rear wheel contact
point. By doing so, it can be shown that the swing perturbator, only results in a generalized
desired roll perturbation. The system is drawn in figure 6-2, for which the equations of motion
will be derived using the TMT method.

A

B

1
2m

1
2m

x

z

φ

θ

h

r

r

g

Figure 6-2: Simplified swing perturbator, with; A real wheel contact, B swinging hinge point, h
distance between A and B, r distance between B and masses m1 and m2 and where g represents
the acceleration caused by gravity. The two mass points are placed placed under a 90 degree angle,
such that they allow for a swinging angle of almost 45 degrees back and forth. The connectors
are all simplified to massless rods.

6-1-1 Equations of Motion

The generalized coordinates consist of the swing angle θ and roll angle φ, according to:

qs = [φ, θ]T (6-5)

The xz coordinates and rotation of the combined center of mass (which lies exactly between
the two masses) and its rotation expressed in terms of the generalized coordinates are given
by:

xi =

 h sin(φ)− 1
2
√

2r sin(φ+ θ)
−h cos(φ) + 1

2
√

2r cos(φ+ θ)
φ+ θ

 . (6-6)

The corresponding inertia matrix and conservative force vector then become:

Mij =

m 0 0
0 m 0
0 0 1

2mr
2

 , fi =

 0
mg
0

 . (6-7)
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which result in the following equations of motion:

Mij ẍj − fi = 0 (6-8)

By partial differentiation of xi with respect to qs we obtain the coordinate projection matrix
Ti,s = ∂Ti/∂qs which is used to derive the generalized equations of motion, according to:

Msr q̈r − fs = 0 , (6-9)

where;

Msr = Ti,sMijTj,r , fs = Ti,s (fi −Mijgj) , gj = Tj,pq q̇pq̇q . (6-10)

Next the equations are linearized around the upright position, so q̈s = q̇s = qs = 0, resulting
in the following mass, damping and stiffness matrices:

M̃sr = ∂(Msr q̈ − fs)
∂q̈r

∣∣∣∣
q̈s=q̇s=qs=0

,

C̃sr = ∂(Msr q̈ − fs)
∂q̇r

∣∣∣∣
q̈s=q̇s=qs=0

,

K̃sr = ∂(Msr q̈ − fs)
∂qr

∣∣∣∣
q̈s=q̇s=qs=0

,

with coefficients;

M̃sr =
[
m(h2 −

√
2hr + r2) 1

2mr(2r −
√

2h)
1
2mr(2r −

√
2h) mr2

]
, (6-11)

C̃sr =
[
0 0
0 0

]
, (6-12)

K̃sr =
[
−1

2m(2gh−
√

2rg) 1
2
√

2rmg
1
2
√

2rmg 1
2
√

2rmg

]
. (6-13)

which describe the equations of motion in terms of the generalized coordinates according to;

M̃sr ¨̃qr + C̃sr ˙̃qr + K̃sr q̃r = fs,ext , (6-14)

where the external forces fs,ext = [−Tφ, Tθ]T are simply added to the equations. For conve-
nience, we will drop the tilde notation from now on and assume linearity throughout the rest
of the analysis.

6-1-2 Analysis

The analysis is split up in a active and passive perturbator contribution.
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Active system contribution

We start of by fixing the roll angle φ, so we can analyze the influence of the newly added
coordinate θ on the roll excitation Tφ. By substituting φ = 0 and take the roll angle equation,
we can derive the following expression for the roll torque:

m12θ̈ + c12θ̇ + k12θ = −Tφ , (6-15)

For which we can write out the mass, damping and stiffness coefficients, resulting in:

Tφ = −1
2mr(2r −

√
2h)︸ ︷︷ ︸

dynamic cont.

θ̈−1
2
√

2rmg︸ ︷︷ ︸
static cont.

θ . (6-16)

So the roll torque consists of a dynamic (inertial) and static (spring) contribution, which are
both proportional to the mass. The static contribution is also proportional to r, which means
that the static efficiency can be improved by simply increasing the mass hinge distance r.
Next, we will derive the frequency response function from θ to Tφ. By introducing the Laplace
operator s = iω and assuming the initial conditions to be zero, we derive:

Tφ
θ

= 1
2mr(2r −

√
2h)ω2 − 1

2
√

2rmg , (6-17)

This result shows two types of behavior. Dependent on whether r is greater or lower than
1
2
√

2h, the dynamic and static may either add up or cancel out.

First, we focus on the case where 2r ≤
√

2h, where the inertial and static force add up. From
equation 6-17 we observe that the inertial contribution depends quadratically on r. This
inertial contribution ca be optimized by setting by setting its partial derivative with respect
to r to zero and solve for r, resulting in:

∂

∂r

[
1
2mr(2r −

√
2h)

]
= 1

2m
(
2r −

√
2h
)

+mr = 0 → r = 1
4
√

2h , (6-18)

which means that the height of the combined center of mass is equal to half the swinging
hinge height h.
The stiffness component is proportional to r, which means a larger r is more beneficial.
However, r is also bounded by the zero gain frequency constraint r ≤ 1

2
√

2h, which forms an
upper bound of r. Therefore, the optimal stiffness is achieved when r = 1

2
√

2h.
Combining the optimal inertial and static parameter configurations results in the optimal
parameter space of r:

1
4
√

2h ≤ r ≤ 1
2
√

2h . (6-19)

where the lower represents the inertial optimum which is useful for high frequency excitation
and the upper bound describes the static optimum which is useful for quasi static excitation.
So given a certain excitation frequency; an optimal r can be found within these boundaries.
Next, we focus on the case where 2r >

√
2h, where the inertial and static force may cancel

out. The cancellation is frequency dependent, for which the zero gain frequency ω0 is the
frequency where Tφ/θ = 0.

ω0 =

√ √
2g

2r −
√

2h
, for 2r >

√
2h . (6-20)
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At and round the zero gain frequency, the gain is very low, resulting in a small torque output
for large swing angle input. Therefore, this zero gain frequency should not interfere with the
input bandwidth, so ω0/2π should either be way smaller than 0.2 Hz or larger than 4 Hz.
Figure 6-3 shows the zero gain frequency as a function of the parameters r and h. Here, the
feasible domain is bounded by the two following constraints:

1. Zero gain constraint: 2r >
√

2h.

2. Geometrical constraint: r < h.

The first constraint follows from 6-20 and the second constraint is a geometrical constraint.
Without the latter it would be possible for r to be longer than h, which means the swing
will intersect with the ground level for θ = 45 degrees. From figure 6-3 and equation 6-20

Figure 6-3: Zero gain frequency ω0 as function of the swing arm length r and swing axis height
h. The white top left triangle is infeasible by the stability constraint, the bottom right white
triangle is due to the geometrical constraint. Even while both distances are plotted on a scale
from 0 to 2 m, there is no feasible solution where the zero gain frequency is outside the input
bandwidth of 0.2 to 4 Hz.

we observe that the eigenfrequency goes to infinity for 2r →
√

2h. However this region lies
on the edge of instability, which makes it a challenge to design properly. On the other hand,
the lowest eigenfrequency is reached at r = h = 2m, which results in a zero gain frequency of
0.54 Hz. In short, there is no feasible result for the case of 2r >

√
2h.

Concludingly, the design is most efficient where 2r ≤
√

2h, since no zero gain frequency is
present and the static and dynamic contributions add up.
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Passive system contribution

Next, we focus on the passive system contribution of the perturbator to the roll dynamics.
This is achieved by fixing θ, and analyze the roll equation, which reduces to:

m11φ̈+ c11φ̇+ k11θ = −Tφ , (6-21)
Where the mass, damping and stiffness terms result in a passive additive contribution to the
bicycle roll equation. For which we can write out the mass, damping and stiffness coefficients,
resulting in:

Tφ = −m(h2 −
√

2hr + r2)θ̈ +mg(h− 1
2
√

2r) . (6-22)

The static contribution is similar to that of a simple pendulum, where h− 1
2
√

2r is the height
of the center of mass. The inertial contribution depends also the same height squared, so:
m(h− 1

2
√

2r)2 = m(h2 −
√

2rh + 1
2r

2). The remaining inertia m1
2r

2 is due to the rotational
inertia around the center of mass.
The both the inertial and passive system contribution are minimized for the case where
1
2
√

2r = h, which means that the center of mass lies in the contact point. For this case the
stiffness term completely diminishes, while the inertia reduces to 1

2r
2. However this is not

realistic, since the geometrical constraint (r ≤ h) is violated.

Example

Let’s assume a the perturbator is mounted on top of the luggage carrier, which corresponds
roughly to a height h = 0.7 m. After some trial and error we set r = 1

3
√

2h, which results in
a good roll-torque/swing-angle ratio. The gravitational acceleration is fixed to g = 9.81 m/s2

and the mass is set to m = 20 kg.
We then can calculate the required swing angle θ(t) as a function of the desired perturbation
signal w(t). The resulting time response is shown in figure 6-4, which shows a maximal swing
angle of around 0.35 rad or 20 degrees.
The corresponding torque and power can be calculated by using equations 6-3 and 6-4 respec-
tively. These results are shown in figure 6-5, where the maximum absolute torque and power
are 65.27 Nm and 67.22 Watt.
By substituting the parameters into 6-21, we can also calculate the passive system contribu-
tion, which yields: m11 = 5.44 kg·m2 and k11 = −91.45 Nm/rad. So this particular swing
perturbator adds additional inertia and negative stiffness to the system.

6-1-3 Summary

A swing type perturbator has been modeled and analyzed. The transfer function from swing
angle θ to roll torque output Tφ has been derived. To be effective, this mechanism should have
a large gain, meaning low swing angle inputs should result in large torque outputs. However,
the transfer function has an eigenfrequency, which should fall outside the input bandwidth of
0.2 to 4 Hz. This eigenfrequency depends on swing arm r and swing hinge height h design
parameters. Figure 6-3 shows that there is a very limited set of parameter combinations
possible to achieve this goal. In addition, the swing perturbator also passively adds addition
inertia and negative stiffness to the system.
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Figure 6-4: Required swing angle θ as a function of the desired roll perturbation w, with
parameters: h = 0.7 m, r = 1

3
√

2h m, g = 9.81 m/s2 and m = 20 kg.

Figure 6-5: Perturbator torque fθ and power Pθ as a function of time t, with parameters: h = 0.7
m, r = 1

3
√

2h m, g = 9.81 m/s2 and m = 20 kg.
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6-2 Design of a sliding mass perturbator

The sliding mass perturbator uses a mass which slides laterally above the rear wheel contact
point. By doing so, it can be shown that the sliding mass perturbator, only results in a
generalized roll perturbations. The system is drawn in figure 6-6, for which the equations of
motion are derived using the TMT method. The analysis shows a lot of similarity with the
swinging perturbator,

A

B

m

x

z

φ

u

hg

Figure 6-6: Simplified sliding mass perturbator, with; A real wheel contact, B zero sliding point,
h distance between A and B, u slider displacement and where g represents the acceleration caused
by gravity. The connectors are all simplified to massless rods.

6-2-1 Equations of Motion

The generalized coordinates consist of the roll angle φ and slider displacement u, according
to:

qs = [φ, u]T (6-23)

The coordinates of the center of mass and is expressed in terms of the generalized coordinates
and is given by:

xi = Rφ

[
u
−h

]
, Rφ =

[
cosφ − sinφ
sinφ cosφ

]
. (6-24)

Notice that the mass is modelled as a point mass, so the rotational inertia around the mass
center is zero. For this case, the corresponding inertia matrix and conservative force vector
become:

Mij =
[
m 0
0 m

]
, fi =

[
0
mg

]
. (6-25)

which result in the following equations of motion:

Mij ẍj − fi = 0 (6-26)
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Similar to the swinging perturbator, the information is inserted into the TMT machinery,
resulting into a set of generalized non linear equations. These equations are linearized around
the upright equilibrium position, so q̈s = q̇s = qs = 0, resulting in the following mass, damping
and stiffness matrices:

M̃sr =
[
mh2 mh
mh m

]
, (6-27)

C̃sr =
[
0 0
0 0

]
, (6-28)

K̃sr =
[
−mgh −mg
−mg 0

]
. (6-29)

Similar to the swinging perturbator, this results in the following set of linear equations:

M̃sr ¨̃qr + C̃sr ˙̃qr + K̃sr q̃r = fs,ext , (6-30)

where the generalized external forces fs,ext = [Tφ, Tu]T are simply added to the equations.
For convenience, we will drop the tilde notation from now on and assume linearity throughout
the rest of the analysis.

6-2-2 Analysis

The analysis is divided in an active system contribution (where φ is fixed) and a passive
system contribution (where u is fixed).

Active system contribution

We start of by fixing the roll angle φ, so we can analyze influence of the newly added coordinate
u on the roll excitation Tφ. By substituting φ = 0 and take the roll angle equation, we can
derive the following expression for the roll torque:

m12ü+ c12u̇+ k12u = Tφ , (6-31)

For which we can write out the mass, damping and stiffness coefficients, resulting in:

Tφ = mhü−mgu . (6-32)

So again the roll torque consists of a dynamic (inertial) and static (spring) contribution, which
are both proportional to the mass. This is similar to the swinging perturbator, but here the
rotational inertia is zero, due to the point mass model. Both contributions are proportional
to m, which means a greater and more beneficial torque to sliding distance ratio.
Next, we will derive the transfer function of u over Tφ, which we can use to analyze the
frequency response. By introducing the Laplace operator s = iω and assuming the initial
conditions to be zero, we derive:

Tφ
u

= −m
(
hω2 + g

)
, (6-33)

Contrary to the swing perturbator, the sliding mass perturbator does not have a zero gain
frequency. Here, thee dynamic and static component now always add up in stead of canceling
out, under the assumption that h is positive. This is a nice property, since it makes the design
way more effective.

P.D.L. de Lange Master of Science Thesis



6-2 Design of a sliding mass perturbator 79

Passive system contribution

Next, we focus on the passive system contribution of the perturbator to the roll dynamics.
This is achieved by fixing u, and analyze the roll equation, which reduces to:

m11φ̈+ c11φ̇+ k11θ = Tφ , (6-34)

For which we can write out the mass, damping and stiffness coefficients, resulting in:

Tφ = mh2θ̈ −mghθ . (6-35)

This is similar to the swing perturbator, where the passive system contribution also consists
of additional inertia and negative stiffness. The stiffness is comparable to a simple inverted
pendulum, where the stiffness is negatively proportional to the mass, gravity and moment
arm around the origin. The inertia is simply proportional to the perturbator mass times the
mass center height squared, which is a familiar expression.

In short; the sliding mass perturbator adds inertia and negative stiffness to the system.

Example

Let’s assume a the perturbator is mounted on top of the luggage carrier, which corresponds
roughly to a height h = 0.7 m. The gravitational acceleration is set to g = 9.81 m/s2 and a
mass of m = 10 kg is chosen.

We then can calculate the required lateral displacement u(t) as a function of the desired roll
torque Tφ = w(t). The resulting time response is shown in figure 6-7, which shows a maximal
amplitude of around ±0.12 m.

The corresponding force and power can be calculated by using equations 6-3 and 6-4 respec-
tively. These results are shown in figure 6-8, where the maximum absolute force and power
are 52.73 N and 12.25 Watt.

By substituting the parameters into 6-35, we can also calculate the passive system contribu-
tion, which yields: m11 = 4.9 kg·m2 and k11 = −68.67 Nm/rad.

6-2-3 Summary

A sliding mass type perturbator has been modeled and analyzed. The transfer function from
sliding distance u to roll torque output Tφ has been derived. To be effective, this mechanism
should have a large gain, meaning that small sliding displacements should result in large
torque outputs. Contrary to the swing perturbator, the dynamic and static contributions add
up, which makes it a more effective mechanism. For example, setting the slider height to 0.7m
and the mass to 10kg results in maximum displacement of u = 0.12m, which is reasonable.
In addition, the sliding mass perturbator also passively adds inertia and negative stiffness to
the system.
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Figure 6-7: Required sliding displacement u as a function of the desired roll perturbation w,
with parameters: h = 0.7 m, g = 9.81 m/s2 and m = 10 kg.

Figure 6-8: Perturbator torque fu and power Pu as a function of time t, with parameters:
h = 0.7 m, g = 9.81 m/s2 and m = 10 kg.
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6-3 Lateral accelerator

Another possibility would be to accelerate the environment laterally, which results in a lateral
acceleration of the rear and front wheel contact points. This concept could be implemented
by mounting an treadmill onto a lateral movable platform. By actuating the platform, the
contact points are displaced laterally, which creates a falling moment, for which the rider
should take appropriate action. By doing so, the mass of the combined bicycle/rider system
is basically used for creating a roll perturbation. This won’t result in a generalized roll torque,
since the front wheel contact point is also excited. However, it is likely that the roll torque
dominates the excitation, mass center lies near to the rear wheel contact. In addition, the
lateral vestibular feedback of the rider will be biased through the added lateral acceleration.

The concept is shown in figure 6-9, where the analysis is simplified to the perturbation plane.
Here, the rear wheel contact is introduced as a degree of freedom.

B
m

x

z

φ

u

hg

A

Figure 6-9: Simplified lateral contact point displacement perturbator, with roll angle φ, lateral
displacement u, rear wheel contact point A , massm , height of center of mass h and gravitational
acceleration g.

6-3-1 Equations of Motion

The generalized coordinates consist of the roll angle φ and contact point displacement u,
according to:

qs = [φ, u]T (6-36)

The xz coordinates of the center of mass are expressed in terms of the generalized coordinates
and is given by:

xi =
[
u+ h sinφ
−h cosφ

]
. (6-37)

Here the mass is modeled as a point mass, so the rotational inertia around the mass center is
zero. This is not realistic since the rider in fact has a large moment of inertia. However, since
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we will constraint the roll angle later on in the subsequent analysis, this will not matter. The
corresponding inertia matrix and conservative force vector become:

Mij =
[
m 0
0 m

]
, fi =

[
0
mg

]
. (6-38)

which result in the following equations of motion:

Mij ẍj − fi = 0 (6-39)

Similar to the swinging perturbator, the information is inserted into the TMT machinery,
resulting into generalized non linear equations. These equations are linearized around the
upright equilibrium position, so q̈s = q̇s = qs = 0, resulting in the following mass, damping
and stiffness matrices:

M̃sr =
[
mh2 mh
mh m

]
, (6-40)

C̃sr =
[
0 0
0 0

]
, (6-41)

K̃sr =
[
−mgh 0

0 0

]
. (6-42)

Similar to the swinging and sliding mass perturbator, this results in the following set of linear
equations:

M̃sr ¨̃qr + C̃sr ˙̃qr + K̃sr q̃r = fs,ext , (6-43)

where the generalized external forces fs,ext = [−Tφ, Tu]T are simply added to the equations.
For convenience, we will drop the tilde notation from now on and assume linearity throughout
the rest of the analysis.

6-3-2 Analysis

The lateral accelerator uses inertia of the rider/bicycle system to perturb the system, where
no passive system contribution is added to the system. Therefore, the analysis is limited
to the active system contribution only. In addition the lateral accelerator has no real design
parameters, since the height h and massm are fixed and existing properties of the rider/bicycle
system.

Again, we start of by fixing the roll angle φ, so we can analyze influence of the newly added
coordinate u on the roll excitation Tφ. By substituting φ = 0 and take the roll angle equation,
we can derive the following expression for the roll torque:

m12θ̈ + c12θ̇ + k12θ = −Tφ , (6-44)

For which we can write out the mass, damping and stiffness coefficients, resulting in:

Tφ = −mhü . (6-45)

P.D.L. de Lange Master of Science Thesis



6-3 Lateral accelerator 83

Figure 6-10: Required lateral displacement u as a function of the desired roll perturbation w,
with parameters: h = 1.2 m, g = 9.81 m/s2 and m = 80 kg.

Unlike the the swing and mass slider designs, since the roll torque no longer has a static
contribution. The roll torque is now simply proportional to the combined bicycle/rider mass
times the height of the mass center. Notice that for this case the parameters h and m are
actually no design parameters, but merely properties of the rider and bicycle.

Next, we will derive the frequency response function from u to Tφ By introducing the Laplace
operator for the frequency domain s = jω and by making use of equation 6-45 we derive:

Tφ
u

= mhω2 . (6-46)

The gain increases quadratically with ω, which makes the design most efficient for high
frequency perturbation. We also observe that the mechanism has a zero gain frequency at
ω = 0, which means that the this particular design is unable to apply a constant torque. The
transfer function is used to determine the required lateral displacement of the rear contact
point u by using the desired perturbation spectrum Tφ = w(t). As a rough estimate, we set
the combined bicycle/rider mass tom = 80kg centered at a height of 1.2m. The resulting time
response is shown in figure 6-10 From this figure we observe that a lateral displacement that
a lateral displacement amplitude of ±0.05 m is required, which is more than reasonable. We
also observe that the lowest frequency (0.2 Hz) dominates the lateral displacement amplitude,
since the perturbator is less efficient for lower frequencies.

The corresponding force and power can be calculated by using equations 6-3 and 6-4 respec-
tively. However, these results will underestimated the actual required perturbation force and
power, since we haven’t included the mass of the treadmill. This treadmill might 5 or 10
times as heavy as the total rider/bicycle mass, therefore the obtained force and simulation
are not realistic and could easily be a factor 5 higher. Nevertheless, these results are shown
in figure 6-11, where the maximum absolute force and power are 33.33 N and 2.04 Watt.
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Figure 6-11: Perturbator torque fu and power Pu as a function of time t, with parameters:
h = 1.2 m, g = 9.81 m/s2 and m = 80 kg.

6-3-3 Summary

A lateral rear contact point accelerator has been modeled and analyzed. This design uses the
inertial properties of the rider/bicycle system to exert a roll torque. The transfer function
from roll torque output Tφ to lateral contact displacement u has been derived. Here, the roll
torque is now simply proportional to the combined bicycle/rider mass times the height of the
mass center. The required lateral deviation is obtained, by simulating the desired input roll
torque Tφ = w(t). This results in a required lateral deviation of ±0.05 m, which is more than
reasonable. No passive system contribution is added by the lateral accelerator, since it makes
use of the rider/bicycle inertia. In short, the design shows a good performance, but might be
hard to implement and may be expensive.

6-4 Design of a rope perturbator

Finally, the rope perturbation method, described in chapter 3, will be analyzed. Only in
this case we will mount it in the perturbation plane, so it only results in a generalized roll
torque. The rope perturbator uses a simple rope which is attached to the bicycle somewhere
in the perturbation plane. By pulling laterally roll torque may be induced on the rider/bicycle
system. To induce both positive and negative roll torque, either two ropes should be used for
two way pulling, or a stick might be used for pushing and pulling. Since the pulling force is
applied externally, the bicycle should either be placed on a treadmill or the pulling should be
applied by walking along the forward moving bicycle/rider. The concept is drawn in figure
6-12, for which we skip the equations of motion and move straight on to the analysis.
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Figure 6-12: Simplified rope perturbator, with; A real wheel contact, B rope connection p7oint,
rope force f , moment arm h and where g represents the gravitational acceleration.

6-4-1 Analysis

It can be shown that the roll torque exerted by the pull force f for small angles of φ is given
by:

Tφ = −hf , (6-47)

with moment arm h and pull force f , and where the mass of the rope is neglected. This
expression is as simple as the mechanism is, since it only requires a treadmill, rope and force
sensor.
Since the rope adds only little mass, the passive system contribution is expected to be ne-
glectable.

6-4-2 Summary

A rope type perturbator has been modeled and analyzed. The transfer function from pull
force f to roll torque output Tφ has been derived. The design is very simple and cheap,
but requires a connection with the external environment. A simple solution would be a
treadmill environment, where the force is manually applied through human power. However,
this method seems to be more suited for impulse excitation than for multi sine excitation.
The passive system contribution of the rope perturbator is very small and can probably be
neglected.

6-5 Comparison

The mechanisms will be compared with each other on a number of criteria, such as per-
formance, implementability, dynamic interaction, etc. Table 6-2 shows an overview of the
different perturbator designs, where scores ranging from 1 to 10 (similar to our grading sys-
tem) are assigned to each criteria. Each criteria will be weighted by its importance, such that
all the weighted scores can be added up en reveal which is the best design.
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6-5-1 Overview of example calculations

Table 6-1 shows an overview of the performances found for all the examples presented in the
previous sections. Not all the results are comparable, since their dimensions do not agree.

Swing Slider Lateral

max |x(t)| 0.35 rad 0.12 m 0.06 m
max |ẋ(t)| 2.23 rad/s 0.44 m/s 0.10 m/s
max |fx(t)| 65.27 Nm 52.78 N 33.33 N
max |Px(t)| 67.22 Watt 12.25 Watt 2.04 Watt

Table 6-1: Overview of the perturbator examples treated in the previous sections. Here x denotes
the perturbator degree of freedom, so for the swing example x = θ and for the slider and lateral
accelerator x = u.

6-5-2 Design criteria

Each design will be evaluated along a number of design criteria. The criteria will be weighted
to make them comparable with each other. For example, performance may be more important
than cost. The following criteria are used for the evaluation; performance, dynamic interac-
tion, rider interaction, implementability and cost. In this section, the various criteria will be
introduced and described shortly, after which each of the designs will be discussed briefly.

Active system contribution

The performance criterium defines how well the design is capable of applying the desired roll
torque disturbance w(t). A perfect score means a perfectly applied roll perturbation signal
using the active system contribution. Some designs may have a limited excitation amplitude
or bandwidth, which reduces the performance. The active system contribution is the most
important criterium, which contributes 40 percent of the overall score.

The example swing and sliding mass designs shows the best active system contribution, since
they manage to produce the desired disturbance perfectly. Or at least for the linear case,
since the swing example shows swinging angles of over 30 degrees, which probably introduces
significant non linearities. The sliding mass is presumably less affected by non linearities,
since the slider is truly linear and the deviation is only 0.23 m.

The lateral accelerator does not exert a generalized roll torque but generates some steering
torque as well. However this is largely compensated by the great efficient of the lateral
deviation to roll torque transfer function. Here, the example shows that only ±0.05 m of
lateral displacement is required to generate the desired perturbation signal.

The simple rope solution, does not allow for simple allow for automated multi sine perturba-
tion, which results in a poor score Overall, the performance scores are generally good, except
for the rope perturbator.
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Passive system contribution

The dynamic interaction criterium defines how much the mechanism interacts with the rid-
er/bicycle apart from the desired roll torque interaction. For example; the swing and sliding
mass design, add a lot of inertia to the bicycle, which affects the original bicycle dynamics.
A score of 10 is assigned to this criterium, if the design has no dynamic interaction other
than the desired roll perturbation. The dynamic interaction is the second most important
criterium, and contributes 20 percent of the total score.

Here the lateral accelerator shows a perfect score, since it does not add any Passive system
contribution at all. The rope adds only little mass, so the Passive system contribution for this
design is expected to be neglectable. The swing and sliding mass mechanism show the poorest
scores, since they require an on board perturbator. This perturbator requires a reasonable
amount of mass, which introduces addition roll inertia and negative roll stiffness to the system.

Rider Interaction

The rider interaction criterium defines how much the riding behavior of the rider may be
affected by the experiment. For example; riding on a tread mill is considered to be stressful
and will affect the riding behavior. A score of 10 will be assigned if the perturbator design
does not affect the rider behavior at all. The rider interaction will contribute for 15 percent
of the total score.

The swing and sliding mass perturbator show the best score for this criterium. This is because
these designs allow for outdoor experiments, resulting in maximal freedom. The rope and
lateral accelerator designs generally require a lab environment with treadmill. The rope
solution might also be performed outside, by applying pull force while running/bicycling next
to the subject. In addition lateral accelerator design also tricks the lateral vestibular organ
of the rider, which may affect the rider action.

Implementability

The implementability criterium describes how well the design can be implemented. For exam-
ple; a rope perturbator with force sensor is easy to manufacture, whereas a lateral movable
treadmill would be a true design challenge. Obviously, a more easy implementable design
gives a higher score. The implementability will contribute for 15 percent of the total score.

Here the rope design scores best, since it has already been implemented in the past and has
proven to be an easy method. The swing and sliding mass mechanism are expected to be
well implementable, although they probably require a reasonable amount of electronics. The
lateral accelerator requires a lateral moving treadmill, which is a big thing to manufacture.

Cost

As with all projects, costs are always an issue. Therefore, we also include the cost criterium.
A cheap solution results in a high cost grade, whereas more expensive solutions result in lower
grades. The weight factor of the cost criterium is set to 10 percent of the overall score.
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Criteria Weight factor Swing Slider Lateral Rope

active system contribution 0.40 8 9 8 2
Passive system contribution 0.20 4 4 10 9
Rider interaction 0.15 8 8 4 6
Implementability 0.15 7 8 2 10
Cost 0.10 6 7 2 10

Total score 6.85 7.50 6.30 6.00

Table 6-2: Comparison table showing the criterium scores for each design.

Again, the simple rope solution shows the highest score, since it only requires a rope and
force sensor. The lateral accelerator is expected to be the most expensive, since it requires
a mechanism which actuates a complete tread mill laterally. The swing and sliding mass
perturbator do require some actuating components, sensors, etc. which is assumed to be
affordable.

6-5-3 Comparison table

Finally, the criterium scores are assigned for each design. The process of assigning scores
to various criteriums is an arbitrary process, which involves a lot of engineering judgment.
Therefore, the scores should not be taken to exactly, but they provide more of a rough
quantitative estimate of the design performances. The resulting scores are shown in table 6-2.
Here, the assigned score for each design/criterium ranges from 1 to 10 (similar to our grading
system). From this table, we observe that the sliding mass perturbator shows the best overall
score. Therefore, this mechanism is recommended for further development.

6-6 Summary

In this chapter we have introduced and analyzed a number of perturbator designs. The goal
of these designs is to apply a desired perturbation signal w(t) as a generalized roll torque
Tφ to the rider/bicycle configuration. This generalized roll torque can be achieved by only
perturbating in the perturbation plane, which is defined in figure 6-1.

4 perturbator designs are presented, namely; the swing, sliding mass, lateral accelerator
and simple rope perturbator. The swing and sliding mass perturbator are similar and both
introduce an additional degree of freedom and mass. The lateral accelerator uses the mass
properties of the rider/bicycle itself by lateral acceleration of the ground contact points. The
rope perturbator simply uses a rope mounted to the bicycle frame, which generates roll torque
when pulled in a lateral direction.

The designs are evaluated by the following criteria; active system contribution, passive system
contribution, rider interaction, implementability and cost. Here, the sliding mass perturbator
shows the best overall score and is recommended for further development.
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Chapter 7

Discussion

In this chapter an overall discussion is presented. This discussion is divided into two cat-
egories, namely; experimental results and experiment design. The first will focus on our
obtained results, whereas the second will focus on future identification experiments.

7-1 General control description

First a discussion point about the general control description is given.

• Rider model does not include co-contraction: The rider model does not include co-
contraction. This type of control was excluded, since it was not expected take during
bicycling. However, when looking at the model sensitivity function shown in figure
5-2, we observe high frequency control action around 4 Hz. This is rather high, since
the neuromuscular dynamics have a cut-off frequency of around 2 Hz. This kind of
high frequency control might be due to co-contraction, which is not limited by the
neuromuscular dynamics. Therefore it might be interesting to include co-contraction
models in subsequent analysis.

7-2 Experimental Results

In this section the experimental results are discussed.

• No pure roll excitation during the experiment: During the experiments, the rope per-
turbator is mounted below the seat, which is not situated within the perturbation
plane presented in chapter6. Therefore, the rope perturbator does not exert a pure roll
torque, but also results in a small steering torque component. The succeeding system
identification does take into account for this small steering torque component, but the
experiment design does not. Here the perturbed steering torque component is simply
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neglected. However, since the steering torque component Tδ,w/f = 0.014 is rather small
compared with the roll torque component Tφ,w/f = 0.91, this could be neglectable.
On the other side, the system is known to be much more sensitive for steering torque
excitation than for roll exciton, which increases the effective influence.

• Poor non parametric roll angle identification: The estimated impulse response function
for the roll angle was estimated poorly for most cases. These impulse responses are
shown in figures 4-2, 4-3, 4-4, and 4-5. These poor results might caused by increased
sensory noise for the roll angle, since the roll angle presumably is way more difficult to
measure than steering angle. If the subject would be unable to sense the roll angle cor-
rectly, he will be unable to apply proper roll angle feedback, resulting in more stochastic
roll response. Only for the case of v = 3.2, the roll angle response showed a reasonable
signal to noise ratio. However, this measurement is performed with a different rider and
task instruction, which could affect the outcome.

• Poor experimental results at low velocities: The experimental data obtained for a for-
ward velocity of v = 2.1 m/s where of poor quality. Here, the impulse response function
for both the roll and steering angle response where dominated by noise, rendering them
useless for subsequent parametric modeling. An explanation for these poor results might
be given by the increased bicycle instability for low forward velocities. This requires a
lot more of active stabilization, which dominates the output, which results in a poor
signal to noise ratio. This ration might be improved by using more excitation power
and longer measurements.

• Different riders and task instructions used: Table 3-2 shows that one of the measure-
ments (at v = 3.2 m/s) is performed with a different rider and task instruction. The
task instruction for this trial was set to straight line tracking while being disturbed,
whereas others tasks where about roll stabilization while being disturbed. However,
since the measurements where all performed on a rather small horse treadmill, they all
require some sort of heading control. This is also observed when looking at the para-
metric results, where heading control in terms of negative integrative steering feedback
is observed for all cases. Still, since the task instructions differ, they might be hard to
compare with each other.

• Passive rider model used: Despite the availability of complex passive rider models, a
simple rigid rider model is used. Here, the inertial and stiffness contributions of the
to the steering angle are neglected. Whereas the more complex passive riders models
described in section 2-1 do include these properties. These more complicated rider
models are also explained in more detail in Schwab et al. (2011).

7-3 Parameter Estimation

Here we present some discussion about the process of estimating the parameters.

• Parameter interdependency: The parameter covariance matrix reveals the interdepen-
dency between the obtained parameters. If the covariance matrix would only have
diagonal entries, it means that the parameters are independent of each other. In our
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case, there are off diagonal terms present which indicate parameter dependencies. This
results in non-consistent results when reducing the set of parameters using parameter
reduction techniques. If a parameter is removed, the dependent parameters may fill up
the empty parameter space, which may explain for the parameter variations through the
reduction steps. This might be solved by introducing a set of orthogonalized parame-
ters, based on the eigenvectors of the Hessian covariance matrix stated in equation 4-24.
By doing so, the least contributing parameters can be eliminated, without affecting the
other.

• Parameter uncertainty for identification results: The parameter covariance matrices
obtained during the system identification analysis are under estimated. Here, the un-
derlying covariance theory assumes an error which is according to a white noise normal
distribution. However, since we removed the noise at an early stage (non-parametric
modeling) these assumptions do not hold and result in an underestimation of the true
parameter covariance. This is not and issue for the parameter reduction, since only
the relative covariance is of importance here and not the absolute (underestimated)
covariance. Later on, the unbiased covariance for the frequency domain is derived by
using a separate noise model and analytic parameter sensitivity expressions, which is
recommended for future use.

• Parameter reduction failed for v = 4.3 m/s: The parametric model obtained for a
forward velocity of 4.3 m/s could not be successfully reduced by more than 2 parameters,
resulting in a 6 parameter model. This was unexpected, since the parametric models for
v = 3.2 and v = 7.4 could both be reduced by 4 parameters, where the roll angle and
rate, integral action on the steering angle and steering rate form the reduced parameter
set. The same parameters where also present for v = 4.3 m/s case, but in addition we
also have a postive roll acceleration and steering angle gain. The roll acceleration term
was unexpected, which might be caused by modeling errors in the inertia matrix.

However, it can be shown that the system can be stabilized by only 4 parameters,
using optimal control theory. Since the parameter estimation was constantly running
into unstable parameter configurations, we might fix the optimization by including a
constraint on the stability. By doing so, we might be able to successfully, reduce the
parameter set by one or two parameters. Another possibility would be to orthogonalize
the parameters set, by introducing a new set of parameters and then perform parameter
reduction techniques.

• Influence of time delay on parametric outcome: During the parametric model estima-
tion, there where some issues with the time delay. A pure time delay resulted in an
unstable system, so therefore we either neglected or approximated (using Pade approx-
imation) the time delay. Analysis of the parametric results for both cases shows only
minor changes in VAF, but significant changes in the estimated parameters. When
comparing the reduced set of parameters for v = 3.2m/s (same experiment), shown
in table 4-1 for both cases, we observe changes of up to 30% between similar param-
eters. Apparently the absence of time delay, is being compensated by adjusting the
parameters.
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7-4 Parametric Results

Next some parametric results are discussed.

• Steer into the fall: The steer into the fall principle is observable in the positive roll
angle gain kφp and positive roll rate gain kφd for all measurements. From figure 4-15 we
observe that the roll perturbation only results in a initial roll velocity. Therefore, the
roll rate feedback dominates the initial response, which is key to stabilizing the system.
At t = 0.2s the roll angle reaches an initial peak, for which the roll feedback gain start
to kick in. The combined roll angle and rate feedback result in the stabilizing steer into
the fall mechanism, which is also described in section 2-1-3.

• Heading control: The heading control is already discussed in section 4-3-2, from which
we demonstrated that the integrative steering action acts as an controller on the heading.
Here the heading is controlled by applying counter steering , where the turn is removed
by applying a steering torque in the same direction, resulting in a turn in the other
direction. Concludingly, the steering integral action acts as controller on the heading
angle. This heading control is necessary, since the experiment was performed on a
rather narrow horse treadmill, allowing for only little changes in heading an lateral
displacement.

• Key contributors: The roll angle kφp, roll rate kφd, steering rate kδd and steering angle
integral kδi gains are the key contributers and cannot be removed without causing a
major drop of the VAF value for any case. Removal of any of these parameters results
in instability, which is no feasible result, since the measured bicycle/rider configuration
is observed to be stable. Parameter reduction affects the parameter values relatively to
the unreduced parameters, but all the signs remain conserved. This is probably due to
the off-diagonal terms observed in the parameter covariance matrices, which indicate
parameter dependency. If a parameter is removed, the dependent parameters fill up
the empty parameter space, which explains for the parameter variations through the
reduction steps. This might be solved by introducing an orthogonal parameters set, for
which the least contributing parameters can be eliminated, without affecting the other
parameters due to orthogonality.

• Derivative feedback on the steering angle: As stated before, we have identified 4 key
contributers, roll angle and rate feedback and integrative and derivative steering angle
feedback. The roll angle and rate can be explained by the steer into the fall principle,
whereas the integrative action on the steering angle effectively acts as a controller on
the heading angle. However, the derivative action on the steering angle remains less
understood. Effectively it acts as a low pass (due to neuromuscular dynamcis) damper
on the steering angle, so it could remove oscilatory steering motion. However, it might
also be due to co-contraction, which is omitted in the parametric model. Co-contraction
may result in added stiffness and damping onto the steering angle, for which the damping
may be modeled as derivative action on the steering angle. Therefore it is recommended
that the co-contraction mechanism should modeled separately in the parametric model.
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7-5 Experiment Design

In this section some issues about the experiment design are discussed.

• Input amplitude: The maximum input amplitude is set to 40 Nm, which corresponds to
a maximum roll angle deviation of around 3 degrees and steering angle angle deviation of
10 degrees. These deviations are rather small, which ensures both safety and geometrical
linearity, but it also results in a relatively poor signal to noise ratio. However, it would
be nice if we would be able to apply more intense perturbations, of around 60 or 80 Nm.
This could be helpful in detecting non-linearities and will help to create a better signal
to noise ratio. However, this might also increase the passive contribution to the system,
but still it would be interesting. Concludingly, it would be nice if the perturbation
design, allows for optional perturbation power. For example, this could be achieved by
adding some additional mass to the perturbator.

• Estimation of individual parameter variance: It would be nice to estimate the individual
parameter variance prior to the identification experiment. Here we already have all the
ingredients to do so, namely; noise spectrum, input spectrum and parameter sensitivity
of the model. This can be combined to form the covariance matrix, which is stated
in chapter 5. However, this matrix yields information of the interdependent parameter
covariance, where we like to know the individual covariance. We could circumvent this
problem by introducing a new set of orthogonal parameters, such that the covariance
matrix only consists of diagonal terms. For this case, the diagonal terms are equal to
individual parameter variance. It would be interesting to project these variances onto
the original set of parameters to get an idea about the individual parameter variance.

7-6 Perturbator Design

In this section some discussion about the design of an perturbator is presented.

• Comparing designs: The 4 different perturbation designs are compared with each other
based on a number of criteria. These criteria include; active and passive contribution,
rider interaction, implementability and cost. Different weighting factors are assigned
to these criteria to make them comparable with each other. However, the assigning
of weighting factors and criteria scores is a bit arbitrary. Therefore, the overall scores
should not be taken to explicitly.

• Cresting of the sliding displacement: The example calculation for the sliding mass per-
turbation discussed in section 6-3-2 shows a required lateral displacement of ±0.10 m.
However, by cresting the signal, we can reduce this displacement to ±0.12 m, while
maintaining the same input spectrum. This is an maximum amplitude reduction of
around 15%, while maintaining the same input power. Since slider displacement is
considered the restricting factor, the input signal should be crested onto the sliding
displacement u.
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Chapter 8

Conclusions and Recommendations

In this chapter we present a number of conclusions and recommendations.

8-1 Conclusions

In section we present a number of conclusions that can be drawn from this MSc research
project. The goal of this research was to estimate the human controller in bicycling. Using
experimental data from our colleagues of the UC Davis, California, we indeed have identified
the human controller.

8-1-1 Literature analysis

Prior to the experimental data analysis, a number of rider models obtained from literature
where used for simulation studies, which is described in appendix A. Interestingly, the models
presented by van Lunteren and Stassen (1970) and Stassen and Lunteren (1973) where found
to contain some sign errors.

• Sign error in roll equation: The steering related bicycle terms the roll equation, de-
scribed in (van Lunteren and Stassen, 1970), contains a sign error. The Stassen and
Lunteren roll and steering angle definitions are in accordance with the benchmark con-
vention, where steering to the right and rolling to the right are both defined positively.
However, when analyzing the roll angle equation, we oberve that a postive steering angle
will result in a positive roll moment. This is incorrect, since the roll moment should be
of opposite sign, due to the centripetal force generated by the turn. Closer inspection
reveils a sign error in the roll angle equation, where the steering angle related terms
should be of opposite sign. This error is fixed, after which the simulation study (section
A-1) is continued.
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• Stability issues (Stassen and Lunteren, 1973; van Lunteren and Stassen, 1970): The cor-
rected bicycle model and proposed rider model, described in van Lunteren and Stassen
(1970), where both implemented in Matlab, but where found to be unstable. First, we
omitted the time delays, since these generally have an negative impact on stability. The
corresponding eigenvalue analysis of the combined rider/bicycle system indicated that
the system was still unstable. After playing around with the undelayed rider model, it
was found that the combined bicycle/rider system could simply be stabilized by chang-
ing the sign of the upperbody lean controller.
In addition, the ’unbiased’ rider model, described in Stassen and Lunteren (1973), is
also analyzed and implemented. This model has exactly same stability issues as the
previous rider model (van Lunteren and Stassen, 1970). Again this rider/bicycle model
could simply be stabilized by changing the sign of the upper body lean controller. These
issues might be due to sign errors, since changing the sign stabilizes the undelayed
rider/bicycle models.
Finally the time delays where reimplemented to the fixed rider models, but again this
resulted in unstable behavior. Even when replacing the time delays by a second order
Padé approximation resulted in unstable dynamics. Concludingly, it appears that the
Lunteren and Stassen model is inherently unstable.

8-1-2 System description

• System description: The system description shown in figure 2-6 proved to be a useful
tool for describing the combined rider/bicycle system. This description separates the
known bicycle and passive rider properties from the unknown active rider contribution.
In addition the model also allows for easy implemention of an external disturbance
signal. This description proved to be an usefull tool and is recommended for future
rider/bicycle research.

8-1-3 Rider control

In this section the most important conclusions about the actual rider control are presented.

• Stabilizing the bicycle: The rider make use of the steer in to the fall principle for
stabilizing the bicycle. From the experimental dataset, we have obtained a number of
parametric models for forward velocities of v = 3.2, v = 4.3 and v = 7.4 m/s. These
parametric models all show positive roll angle and rate feedback onto the steering torque
output. This effectively results into a steering action in the direction of falling.

• Controlling the heading: The integrative steering action controls the heading by ap-
plying counter steering. In section 4-3 it is shown that the integral action is roughly
proportional to the heading angle. Since the integral action is positive, this means that
the rider exerts steering torque into the direction of the turn. By doing so, the rider
effectively applies a counter steering action mechanism, resulting in a turn in the other
direction. Concludingly, the steering integral action effectively acts as a controller on the
heading angle. This heading control is necessary, since the experiment was performed
on a rather narrow horse treadmill.
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8-1-4 Experiment Design

In this section the most important conclusions about the design of an frequency domain
experiment are presented.

• Measurement settings: The measurements settings are determined in section 5-4 The
experiment should be recorded at a sampling frequency of 200 Hz, which is high enough
to encapsulate the human controller dynamics. This corresponds to a time resolution
of ∆T = 0.05 s. The measurement length is set to N = 215 samples, which corresponds
to a total measurement time of T = N∆T = 163.84 s. The experiment should be
performed at forward velocities of v = 2, 3, . . . , 7 m/s, since the dynamic behavior is
velocity dependent.

• Input signal design: A disturbance input signal has also been designed, and should be
applied as a generalized roll torque to the system. In order to prevent feed forward
control, the input signal should be appear to be random, which can be achieved by
superimposing 5 multi sines or more. The input bandwidth ranges from 0.2 to 4 Hz,
where the human controller is most sensitive in the parameters. The input power is
scaled such that max |w(t)| = 40 Nm, which corresponds to a maximum absolute roll
angle deviation of 3 degrees and steering angle deviation of 10 degrees for a forward
velocity of 3.2 m/s. The resulting input signal is shown in figure 5-5 and 5-6.

8-1-5 Perturbator design

In this section some conclusions about the recommended perturbator are presented.

• Recommended perturbator : The sliding mass perturbator, described in section 6-2, is
recommended for future frequency domain identification experiments. This perturbator
should be well capable of applying the desired input signal w(t), defined in section
5-5. The perturbator does add some roll inertia and negative roll stiffness, but these
contributions are relatively small compared with the original roll inertia and stiffness.
The implementation might give some difficulties, since it requires a linear actuator.
Another option would be the swing type perturbator, which is described in section 6-1.
This design shows a lot of similarity with the sliding mass perturbator, since it also uses
an additional mass for perturbation. The performance however is slightly poorer, but
the design might me easier to implement since it requires an angular actuator

8-2 Recommendations

Finally we present a number of recommendations, which might be useful for future research.

• Orthogonalize parameters: The parameter covariance matrix reveals an interdependency
between the obtained parameters. This interdependency makes the parameter reduction
non-consistent, where the elimination of one parameter may affect the value of the
other parameters. The results in parameter variations through-out the reduction steps,
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as can be seen in table 4-1. Therefore, it recommended to introduce an orthogonal
parameter set, which is linear combination of the old parameters. This will result in
a more consistent parameter reduction sequence. In addition the parameter variance
estimation becomes trivial, since the parameter variance are now simply defined as the
diagonal terms of the covariance matrix.
Next, we will show that it is possible to reparameterize the system by choosing some
arbitrary set of parameters θ”′, which is linear combination of the parameters θ, such
that:

θ′ =
[
∂θ′

∂θ

]
θ , (8-1)

where ∂θ′/∂θ should be invertible. This result may be substituted in equation 5-5,
which yields:
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[
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, (8-2)

where G = GN (eiωk), Φ̂N
v = Φ̂N

v (ωk) and Φ̂N
w = Φ̂N

w (ωk). Since the linear parameter
transformators ∂θ′/∂θ are independent of the summation, we can move them to the left
hand side, resulting in the parameter covariance expressed in the new set of coordinates:

cov θ′ =
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[
∂G
∂θ′

]T]−1

. (8-3)

Since θ′ represents an arbitary linear combination of θ, we are still free to choose this
parameterization. One particularly interesting parameterization would be to define a
linear combination of parameters, such that cov θ′ is orthogonal. This can be achieved
by performing an eigenvalue decomposing of cov θ, which results in a set of eigenvalues
and eigenvectors. The eigenvectors define the linear transformation ∂θ′/∂θ and the
eigenvalues defines the orthogonalized covariance matrix cov θ′.

• Co-contraction: The rider model does not include co-contraction. This type of control
was excluded, since it was not expected take during bicycling. However, when looking
at the model sensitivity function shown in figure 5-2, we observe high frequency control
action around 4 Hz. This is rather high, since the neuromuscular dynamics have a
cut-off frequency of around 2 Hz. This kind of high frequency control might be due
to co-contraction, which is not limited by the neuromuscular dynamics. Therefore, it
would be interesting to reexamine the possibility of implementing co-contraction models
in subsequent analysis.

• Analyze closed loop eigensolutions: In section 4-3 we already analyzed the closed loop
parametetric system stability in terms of the eigenvalues. However, it would be inter-
esting to also analyze the corresponding eigenvectors to gain a better understanding of
the motions involved. This analysis is omitted due to time limitations, but it would be
interesting to see these eigenmotions visualized in future research.
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• Optimal Control Objectives: According to Kleinman et al. (1970) human controllers
show some form of optimal control. A simple example of an optimal control solution is
given in appendix A-2. In stead of specifiying the gains of the controller directly, optimal
control theory only requires specification of the control objectives. These objectives may
be translated into a criterium function, which consists both a performance Q and control
effort R weightning matrix. This criterium can be minimized analytically which results
into an optimal gain matrix K. Since we already estimated the rider gains directly, it
would be interesting to find out what the underlying objectives are. For example; does
the rider applies tight control (high control effort, good performance) or loose control
(low control effort, poor performance). Or when analyzing the performance matrix Q;
does the human controller tries to minimize the roll angle or rate and is heading control
also part of the control objectives? By answering these questions, we may obtain a
deeper understanding of the underlying objectives of the human controller.

• Identifying non-linearities: The performed analysis is performed almost exculsively in
the linear regime, where non linearities are omitted. For future research it would be
interesting to identify and analyze the non linearities present in the system. A number
of non-linearities may be present in the system, for example:

1. non linear scaling
2. intermittent control
3. input type dependent control (e.g. multisine, impulse, step response, etc.)

The first type may be easily identified by experimenting with different input amplitudes
and check wether the output response scales linearly. The second may be harder to
identify and may require non linear model estimation, where a non linear parametric
model is directly fitted onto the data. THe third type of non linearity may be due to
the adaptive behavior of the human controller as a function of the input type. Here,
it would be interesting to perform a linear identification for various input signals and
compare these results with each other.
In addition there also might be other non linearities, which are not stated in this list
such such as time varying behavior due to the learning effect or external causes which
may affect rider control, such as drug and alcohol use.

• Identifying non-linearities: According to Andy Ruina of Cornell University it would
also be interesting to design a tricycle which mimics the dynamic behavior of a bicycle.
Here, the front fork and wheel configuration are be similar to an ordinary bicycle, but
the rear wheel are replaced by two parallel wheels. These rear wheels should not be
connected rigidly to the frame, since that would constrain the roll motion. In stead the
rear wheels and frame should be connected by a four bar mechanism, where the four
bar mechanism is placed such that the fear frame rotates right between the two rear
contact points. By doing so, the rear frame will rotate around the rear wheel contact
point of an ordinary bicycle, which corresponds to roll motion. However, the mechanism
will also introduce more negative stifnesss and less roll inertia, since the location of the
center of rotation changes as an function of the roll angle. This design may be used
for perturbation experiments, by simply adding an perturbator between the rear wheel
axis and rear frame, which allows for roll torque excitation.
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Appendix A

Additional rider model analysis

In this appendix some additional analysis concerning rider models is presented. This done for
the PID controller according to Stassen and Lunteren (1973) and for the optimal controller
according to Schwab et al. (2008). For various reasons, both controllers turned out to be of
limited use for combined rider/bicycle simulations. However, analysis of these models reveiled
some interesting observations concerning stability, sign errors in literature, etc. Therefore it
is decided to include this analysis as an appendix in this report.

A-1 Lunteren and Stassen controller

This section describes the implementation of the Lunteren and Stassen controller according to
van Lunteren and Stassen (1970); Stassen and Lunteren (1973). The controller by van Stassen
and Lunteren describes experimentally based rider control in bicycling. The experiments are
all performed at a fixed forward velocity of 15 km/h. This model will serve as an first estimate
of rider control action and will help us in designing a proper perturbation input signal.

A-1-1 Control model

The block diagram in figure A-1 shows the man machine interaction by Lunteren and Stassen.
The controller C outputs the steering angle δ and rider lean angle θ as a function of the roll
angle φ. By doing so, the controller acts as a constraint on both the steer and lean angle,
reducing the degrees of freedom by two. As a result, the roll angle remains the only degree
of freedom. Therefore the equations of motion of the bicycle are reduced to:

m11φ̈(t) + c11φ̇(t) + k11φ(t) = Tφ(t)

−
(
m12δ̈(t) + c12δ̇(t) + k12δ(t)

)
︸ ︷︷ ︸

Steering interaction

−
(
m13θ̈(t) + c13θ̇(t) + k13θ(t)

)
︸ ︷︷ ︸

Rider lean interaction

, (A-1)
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C Hφ
e u

Tφ

φ0
+

−

Figure A-1: Block diagram of the man machine interaction adapted to Lunteren and Stassen,
with human controller C, roll dynamics Hφ, error e, system input u = [δ, θ]T , roll torque Tφ and
roll angle output φ.

wheremii, cii, kii represent the system coefficients corresponding to roll angle (i = 1), steering
angle (i = 2) and rider lean (i = 3). Since the lean and steer interaction is moved to the
right hand side, since these variables are predescribed by the controller. The roll torque is
represented by Tφ, which acts as an external torque onto the system. For control purposes
the system is converted to the Laplace domain, which yields:

Hφ(s) =
[

1
m11s2+c11s+k11

, m12s2+c12s+k12
m11s2+c11s+k11

, m13s2+c13s+k13
m11s2+c11s+k11

]
, (A-2)

where zero initial conditions are assumed. This transfer function is defined such that

φ(s) = Hφ(s)
[
Tφ(s)
u(s)

]
, (A-3)

where uφ = [δ, θ]T . Next, the controller is given by;

C(s) = −
[
H1(s)
H2(s)

]
, (A-4)

where H1 and H2 represent the steer and rider lean transfer functions provided by Lun-
teren and Stassen (see next section). This controller C is defined according to the following
input/output relation;

u(s) = C(s)e(s), (A-5)

where e = −φ represents the roll angle error. Next, the two rider and bicycle models are
evaluated by analyzing the closed loop poles of the combined system. A suitable rider/bicycle
combination is chosen, which is subjected to further analysis.

Rider model

The two rider models subject to stability analysis are given by Stassen and Lunteren (1973)
are shown in table A-1. The steering related bicycle parameters of the simulator (c12 and
k12) are found to contain a sign flaw, which is corrected for the simulation model. It can be
shown that these signs are incorrect, because a positive steering angle should give negative
roll moment. This is due to the centripetal force generated by the turn, when using the
benchmark sign convention.
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n year Hδn(s) Hθn(s)

1 1969 1.07 (1 + 0.15s) e−0.16s 0.13 (1 + 1.6s) e−0.09s

2 1972 3.6e−0.074s 3 (1 + 0.052s) e−0.026s

Table A-1: Corrected results for the rider models according to Stassen and Lunteren (1973). De
signs of the Hθ controllers are changed, since their action was destabilizing the system. This is
probably due to a sign error in the original articles.

Symbol van Lunteren and Stassen (1970) Batavus Stratos

[m11, c11, k11] [109, 0, −940] [87.92, 0, −806.9]
[m12, c12, k12] [0, 104.2, 998.3] [2.4, 164.6, 1306]
[m13, c13, k13] [23.9, 0, −162] [15.74, 0, −117.5]

Table A-2: Corrected coefficients of the roll dynamics equation (eq. A-2). The terms proportional
to the steering angle given by Lunteren and Stassen are corected by changing the sign

Bicycle model

The bicycle parameters of the roll angle dynamics (equation A-2) of the two bikes are given
in table A-2. The rider model also appears to contain a flaw, since the proposed controllers
are both found to be unstable. This stability issue can be solved by changing the sign of the
Hθ controller, resulting in a stable combined rider/bicycle system .

Closed loop analysis

A closed loop pole analysis is performed to analyze the stability of the system. Next we want
to check the stability of the closed loop system with respect to roll torque perturbation Tφ.
Since all analysis is done in the Laplace domain, the complex argument will be omitted from
now on. Starting of with equation A-3 and making use of equation A-5 we derive;

φ = Hφ

[
Tφ
u

]

= Hφ

[
Tφ
Ce

]

= Hφ

[
Tφ
−Cφ

]
. (A-6)

In order to solve for φ we need to separate the system matrix H in terms of HTφ and Hu,
which are corresponding to Tφ and u respectively;

Hφ =
[
HTφ ,Hu

]
. (A-7)
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C1 C2

Hφ1

-23.9534 -46.7246
-1.2298 -0.8706 + 3.4184i
-0.7312 -0.8706 - 3.4184i

Hφ2

-29.3204 -54.7641
-1.5918 + 1.6804i -1.8941 + 4.7689i
-1.5918 - 1.6804i -1.8941 - 4.7689i

Table A-3: Poles for the different rider/bicycle combinations. With rider models C1 (1969) and
C2 (1973) according to Stassen and Lunteren (1973). These rider models are combined with the
Lunteren and Stassen bicycle Hφ1 and Batavus Stratos bicycle Hφ2. The rider time delays are
omitted, resulting in a stable set of poles for all combinations.

Now we can continue solving for φ;

φ =
[
HTφ ,Hu

] [ Tφ
−Cφ

]
= HTφTφ −HuCφ

=
HTφ

1 + HuCTφ. (A-8)

So the closed loop transfer function of φ with respect to Tφ becomes:
φ

Tφ
=

HTφ

1 + HuC . (A-9)

The roll angle will be stable with respect to a roll torque perturbation if the real part of the
poles of this transfer functions are all negative. Unfortuneately our human controller contains
time delays (see next section), which prevents us from doing a relatively simple pole analysis.
The presence of time delays complicates the stability analysis, since the system effectively has
infinite poles due to the time delays. However to get an first estimate for the stability the
time delays are first neglected and a simple pole analysis is performed. After correcting both
the Lunteren and Stassen bicycle and rider models, the resulting closed loop poles are given
in table A-3.

Model selection

Next a suitable rider and bicycle model will be selected for future analysis. According to
Stassen and Lunteren (1973) the rider model from 1969 is derived using an biased meth-
ods, thereby introducing errors in the estimation procedure. Later on Lunteren and Stassen
improved their estimation methods, resulting in the unbiased human controller C2. This con-
troller provides a more realistic estimate and therefore will be used for future analysis. The
rider model will be used in combination with the Batavus Stratos bicycle model, because this
bicycle will be used for future experiments. This combination is shown to be stable, making
it suitable for future simulations. So in short, the following choices are made:

C = C2 (A-10)
Hφ = Hφ2 (A-11)
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Figure A-2: Bode diagram of the openloop transferfunction Gol and crossover function ωc/jω.
The crossover frequency is identified to be 5.8 rad/s. The -2 slope of the open loop transferfunc-
tion does not match the predescribed -1 slope by McRuer. At higher frequencies the magnitude
keeps on rising, leading to unrealistic feedback gains.

Open loop analysis

Next the selected rider/bicycle combination is subjected to an open loop analysiss. This
is interesting since McRuer states that the openloop tranferfunction of the combined man
machine system should act as a integrator around the cross over frequency ωc:

L̃ ≈ ωc
jω

: near ωc, (A-12)

where L̃ is the expected loop transferfunction of the man machine system. The open loop
transferfunction L of the combined system is given by:

L = CHφ, (A-13)

with input e and output φ. The expected and resulting open loop and transfer functions
are shown in figure A-2. This figure shows that the resulting loop transfer function has a -2
slope, whereas a -1 slope was expected according to McRuer theory. The crossover frequency
is ωc = 5.8 [rad/s], which is a plausible frequency according to McRuer and Jex (1967).

Impulse analysis of lean torque

The lean action is investigated by analyzing the lean impulse reaction of the Batavus Stratos
bicycle. At t0 the system is in a static upright position, resulting in initial configuration
q = [0, 0, 0]T and velocities before the impulse q̇− = [0, 0, 0]T . Next a relative lean impulse

Master of Science Thesis P.D.L. de Lange



106 Additional rider model analysis

Rider Bike

C Hφ H−1 H
e φ u

[δ, θ]T

φ0
+

−

Figure A-3: Block diagram of the man machine interaction adapted to Lunteren and Stassen,
with human controller C, roll dynamics Hφ, bicycle dynamics H, error e, disturbance torque w,
bicycle input u = [Tφ, Tδ, Tθ]T and roll angle output φ.

moment is applied, resulting in a change in velocity according to

q̇+ = q̇− + M−1s =

 −0.0980
−0.0875

0.5606

 [rad/s] (A-14)

where q̇ are the generalized velocities after the applied impulse, M is the generalized mass
matrix and s = [0, 0, 1]T is a unit lean impulse vector. From this result we see that an unit
lean torque impulse results in an negative steer rate. Since steering into the direction of fall
is the dominant method for stabilization, the lean pulse should be applied counteracting to
the direction of falling. In short; falling to the left can be counteracted by leaning to the right
and vice versa.

A-1-2 Reformulation of the rider model

Next the rider model will be reformulated into a more general form, where the desired con-
figuration error is the input and steering and lean torque are the outputs. The block shown
in figure A-1 is modified such that it outputs rider torques. This block diagram and corre-
sponding definitions are shown in figure A-3. From this block diagram we derive the rider
input output relation is given by:

u = H−1
[

Hφ

I

]
Ce, (A-15)

with Hφ = Hu, since there is no external roll torque present withing the human controller.
In figure A-3 a bode diagram of the rider action is shown. At ω = 0 [rad/s] the steering
torque output returns Tδ/e|ω=0 = −30.5432 [N/rad] and for the lean torque output this is
Tδ/e|ω=0 = 267.5570 [Nm/rad]. When looking at the amplitudes we conclude that the steering
torque input is roughly 9 times more efficient than lean torque output. When checking the
signs, we notice that the steering torque input acts into the direction of falling and lean
torque output acts in the opposite way. At higher frequencies both control outputs gradually
increase in magnitude, eventually resulting in unrealistic high feedback from f > 10rad/s.
The identification of the rider model is only performed up to 5 Hz, thereby limiting reliable
estimation of higher frequency content. So the model should only be evaluated in the range
of 0 < ω < 5 · 2π [rad/s].
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Figure A-4: Bode diagram of the human controller u/e. The controller is a SIMO controller
with 1 input; roll angle error and 2 outputs; (1) steering torque Tδ and (2) lean torque Tθ.
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A-1-3 Conclusions

The controller described by Stassen and van Lunteren is implemented in Matlab, with the
aim of creating a simulatable bicycle/rider configuration. However during this process we
encoutered several difficulties. After taking over the results from literature, it turned out
that the controller was unstable. This was because the controller did not fullfill the steer into
the fall principle, which is probably due to sign errors. After correcting for these sign errors,
the controller appeared to be stable when omitting the time delay. However, when including
the proposed time delays, simulations showed that the controller becomes unstable. In short;
the Stassen and Lunteren controllers have stability issues.

In addition the Stassen and Lunteren controller predescribes steer and rider lean angle as an
function of roll angle. By doing so, the controller basically acts as an constraint, reducing the
degrees of freedom by one. This position type of control, results in unrealistic high feedback
gains at higher frequencies. A more natural kind of controller would be torque driven control,
where the human controller outputs torque in stead of position. This torque output control
is more commonly found in literature, making it a more logical choice.

Finally, we remark that the rider identification is only performed at one forward velocity,
namely v = 15 km/h. Therefore the model is of limited use, since it most likely is only valid
around this forward velocity, while we are interested in a whole range of velocities.

Concludingly, the Stassen and Lunteren controller will not be used throughout future analysis
of the combined bicycle/rider system.

A-2 LQR controller

In this section the LQR (Linear Quadratic Regulator) solution is given for the continuous
infinite horizon case. We are interested in controlling the Batavos Stratos with passive rider
model, which is described by the following coefficient matrices:

M0 =

 87.92 2.40 15.74
2.40 0.72 0.53
15.74 0.53 4.62

 ,
K0 =

 -82.25 -2.72 -11.98
-2.72 -0.99 1.52
-11.98 1.52 -12.87

 ,
K2 =

 -0.00 76.74 0.00
-0.00 2.63 0.00
-0.00 11.06 0.00

 ,
C1 =

 -0.00 39.50 0.00
-0.49 2.41 0.00
-0.00 6.18 0.00

 .
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A-2-1 Implementation

In this section the optimal control problem will be solved, resulting in a set op optimal
control gains. We start of with defining the system, subject to control. Using the state space
definitions of equation 2-9, we derive the following state space system.

ẋ(t) = Ax(t) + Bu(t) + w(t) , (A-16)

with state vector x = [φ̇, δ̇, θ̇, φ, δ, θ]T , input vector u = [Tδ, Tθ]T , noise vector w, system
dynamics matrix A and input gain matrix B. This system is observed by the human controller
according to;

y(t) = Cx(t) + vy(t), (A-17)

with output vector y = [φ, δ, θ]T , observation noise vector v and observer matrix C. Next,
the following objective function to be minimized is defined:

J(u) =
∫ ∞

0

(
xTQx + uTRu

)
dt, (A-18)

with state object Q represent the state weighting matrix (performance) and R represents the
input weighting matrix (control effort). Since we are interested in controlling the roll angle
with minimum control effort, we set these matrices to;

Q = Qij =
{

0 for i, j 6= 4
φ−2

max for i, j = 4 , where i, j = {1, 2, . . . , 6}, (A-19)

and

R =
[
T−2
δmax

0
0 T−2

θmax

]
, (A-20)

where φmax = 0.1 rad and Tδmax = Tθmax = 2 Nm. Next, we are looking for a linear control
law of the form:

u = −Kx, (A-21)

where K = RBTP. Than it can be shown that the objective function is minimized by solving
the following algebraic Ricatti equation;

ATP + PA−PBR−1BTP + Q = 0. (A-22)

This equation is automatically solved by Matlab for v = {2..7} m/s. This controller shows
stable behavior for all the evaluated velocities. However the control gains show unrealistic
high gains, even for the case where the performance/control-effort ratio is reduced. Therefore
it is questionable how well this controller describes human rider action. Fortuneately we
obtained a experimental dataset, on which a number of rider models is tested.
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A-2-2 Experimental Results

In addition, this controller was also subjected to experimental validation. The experimental
data set, introduced in the next chapter, is used to validate a number of parametetric models.
Among other rider models, the optimal controler described above is validated using this
data set. The entries of the weightning matrices form the parameters of the modes, which are
optimized by reducing the errors between the measured and simulated output. Without going
into to much detail, the optimal control model performed poorly compared with various PID
controllers (see next section). Because of this, we will focus on another branch of controllers,
which will be presented in the next section.

P.D.L. de Lange Master of Science Thesis



Appendix B

Input signal design

In this appendix, some commonly used perturbation signals will be discussed. An overview
is given at the end of this section.

B-1 White noise

A continues white noise input u(t) is characterized by the following properties;

µu = E{u(t)} = 0 (B-1)
Ruu = E{u(t1)u(t2)} = 1

2Nδ(t1 − t2) (B-2)

Which basically means that the input u has zero mean (µu) and each of the input indices are
uncorrelated (Ruu) with each other. N represents the number of samples and is infinite in a
continues signal. Notice that the fourier transformation of a delta dirac function δ(t1 − t2)
gives simply one, the expected autospectral density of the white noise signal thus simply
becomes;

E{Suu} = 1
2N (B-3)

This is a very nice but strange property. It is nice because the average spectral density stays
constant for all frequencies, allowing for infinite bandwidth identification. It also is a strange
property, because this signal appears to have infinite power. However in practice we use
discrete signals, which results in a finite bandwidth and thus finite power. In addition, we
also may choose to apply a low pass filter to limit the frequency content to a certain range
of interest. White noise is a random process, which makes it is impossible to predict future
values. This is a nice property when identifying the human controller, since humans are capa-
ble of adapting their control strategy. Using random variables thus eliminates the possibility
of using feedforward control. This assumption can be checked afterwards by analyzing the
input (y) and output (y) covariance Cyu as a function of the time difference τ between the
two signals.

Cyu(τ) = 0 , τ < 0 (B-4)
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This means that the output only depends on previous inputs, i.e. there exists a causal
relationship between input (cause) and output (causality).

B-2 Sine sweep

The sine sweep is often used for structual vibration analsyis. Here the model subject to
identification, is excited using a sine sweep, which most of the time starts at at low frequency
and gradually builds up to higher frequencies. A typical definition of the swept sine is given
by;

u(t) = 2A sin
([
π(fmax − fmin) t

T
+ 2πfmin

]
t

)
(B-5)

The autospectral density of this signal is constant between fmin and fmax and gradually
decreases at f > fmax. Unfortuneatly the swept sine is a highly predictive signal, allowing a
human controller to make use of feed forward control.

B-3 Random phase multisine

Finally we introduce the random phase multisine. Here we start by constructing the signal
in the frequency domain and then convert the signal back to the time domain using a inverse
Fourier transformation. The random multisine can be defined as follows:

|U(ω)| =
{

1 for ωmin ≤ ω ≤ ωmax,

0 for ω > ωmax
(B-6)

∠U(ω) =
{
θ for ωmin ≤ ω ≤ ωmax,

0 for ω > ωmax
(B-7)

Where θ is randomly distributed for each frequency ω according to an uniform probability
density function. Setting up signals in the frequency domain allows for easy autospectral
density shaping. This is a nice feature, because we are generally interested in the frequency
content of the input signal. Using this method allows the user to select one or multiple desired
frequency bands. Unfortuneatly this kind of signal modelling in the frequency domain may
result in unwanted peaks in the time domain.

B-4 Crested multisine

To reduce peak amplitudes while mainting the desired average power density, the phase can
be optimized to fullfill these properties. The crest factor C forms a usefull definition when
optimizing the signal;

C = umax
urms

= max(u)√
N−1uTu

, (B-8)
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White noise Swept sine Multisine Crested

Mean (µu): 0 0 0 0
Correlation (Ruu): 1 1 1 1
Spectral density (Suu) : 1.0145 2.4912 2.5000 2.5000
Crest factor (C): 3.6129 1.4026 3.2857 2.3943
Predictable: no yes no no

Table B-1: Comparison of various input signals. Notice that the spectral density is defined as
the average spectral density over the desired frequency band.

where; N represents the number of samples and u represents the input signal vector. The
objective function will be to reduce the crest factor, the parameters subject to optimization
will be the phase indices. It is beyond the scope of this report to explain the optimization
algorithm in detail. What is important is that the resulting signal indeed has a significant
lower crest factor.

B-5 Comparison

A short overview of the various input signals is given in table B-1.

B-6 Results

The multisine offers the best results, but is predicatable, therefore the crested random phase
multisine is advised when identifying the human controller.
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Figure B-1: 4 different input signals: Gaussian white noise, swept sine, random phase multisine,
crested random phase multisine
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Appendix C

Analysis of a Double Inverted
Pendulum on a Cart

In this chapter the dynamic behavior of the inverted double pendulum on a cart will be
investigated. This system shows a lot of similiarities with the bicycle, but it is easier to
understand since it simplifies the problem to a 2 dimensional case. The following analogies
are made:

• The base pendulum corresponds to the bicycle frame.

• The top pendulum corresponds to the rider on top of the bicycle.

• The lateral movement of the system corresponds to lateral movement of the bicycle
when making turns.

The system and corresponding definitions are shown in figure C-1. The locations for the
center of masses are set up as function of the generalized coordinates q = [u, φ, θ]T and yield:

x1 = 1
2 l1 sinφ+ u ,

y1 = 1
2 l1 cosφ ,

x2 = 1
2 l1 sin θ + l1 sinφ + u ,

y2 = 1
2 l1 cos θ + l1 cosφ .

These coordinates and their derivatives are used to set up the systems kinetic energy T and
potential energy V :

T = 1
2m1(ẋ2

1 + ẏ2
1) + 1

2m2(ẋ2
2 + ẏ2

2) + 1
2J1φ̇

2 + 1
2J2(φ̇+ θ̇)2 , (C-1)

V = m1gy1 +m2gy2 , (C-2)

with Ji = 1
12mil

2
i . The energies are inserted into the Lagrange machinery and linerearized

around φ = θ = 0, resulting in the following mass, damping and stifness matrices;

M =
[

m1 +m2
1
2 l1m1 + l1m2 + 1

2 l2m2
1
2 l2m2

1
2 l1m1 + l1m2 + 1

2 l2m2
1
3 l

2
1m1 + l21m2 + 1

3 l
2
2m2 + l1l2m2

1
6 l2m2(3l1 + 2l2)

1
2 l2m2

1
6 l2m2(3l1 + 2l2) 1

3 l
2
2m2

]
,
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A

B

C

u

φ

θ

m1, l1

m2, l2

g

x

y

Figure C-1: Schematic drawing of the inverted double pendulum on a cart, with lateral displace-
ment u, base pendulum angle φ, relative angle θ. The mass and length of the base pendulum is
indicated by l1 and m1 and for the upper pendulum by l2 and m2. The graviational acceleration
is indicated by g.

C =
[

0 0 0
0 0 0
0 0 0

]
, (C-3)

K =
[

0 0 0
0 − 1

2 l1gm1 − 1
2gm2(2l1 + l2) − 1

2 l2gm2
0 − 1

2 l2gm2 − 1
2 l2gm2

]
, (C-4)

Which results in the following set of linear equations:

Mq̈ + Cq̇ + Kq = f , (C-5)

where f = [Tu, Tφ, Tθ] represent the forcing vector, which contains the generalized forces.

Controlling a bicycle shows a lot of similarity with controlling an double inverted pendulum
on a cart. Lateral acceleration into the direction of falling results in a counteracting torque
and the rider lean action can simply modelled as an extra pendulum on top. Therefore by
understanding the inverted double pendulum problem, we can learn more about controlling
the bicycle. First the accelerating in the fall will be analyzed and secondly the lean action
for the double inverted pendulum.

C-1 Accelerating in the fall

By accelerating into the direction of fall, the ground support can be moved back under the
center of mass. For simplicity we assume that the rider is rigidly attached to the bicycle
frame, resulting in the following constraint: θ = 0. This constraint can be projected onto the
equations of motion, making it effectively an single inverted pendulum on a cart. From the
bicycle equations, we know that the lateral acceleration can be controlled by applying proper
steering. Tu. Next we reduce the equations by introducing:

q̃ = Tq , (C-6)

P.D.L. de Lange Master of Science Thesis



C-2 Lean action analysis 117

where q̃ = [u, φ] and T is the reduction matrix, such that:

M̃ = TTMT ,

C̃ = TTCT ,

K̃ = TTKT ,

(C-7)

Here, we allow the lateral acceleration of the cart be controlled by applying lateral torque
control, so f̃ = [Tu, 0]T . The controllability is tested using the Matlab ctrb function, which
stated the system is controlable. To analyze what control means will be neccearly, an optimal
controller is implemented. Here the roll angle is defined as the main control objective. The
resulting gains, showed that the system is mainly controlled by applying postivie roll angle
and rate feedback. In other words; a fall to the left, requires the cart to accelerate in the
same direction.
For the case of the bicycle this lateral acceleration (denoted by ÿ′) is achieved by proper
steering action.

ÿp
′ = v2

w
δ cosλ+ vc

w
δ̇ cosλ. (C-8)

So acceleration to the left, requires steering in the same direction as the fall. This is known
as; ’steer into the fall’.

C-2 Lean action analysis

To analyze the roll and lean angle observed by Stassen and van Lunteren, a simple double
pendulum model simulated. Next we will analyze how the lean action could be used for
controlling the upright position of the double pendulum. First we again reduce the original
double pendulum on a cart equations to exclude the lateral movement:

q̃ = Tq , (C-9)

where q̃ = [φ, θ] and T is the reduction matrix, such that:

M̃ = TTMT ,

C̃ = TTCT ,

K̃ = TTKT ,

(C-10)

Next we only allow for a relative steer torque between the two pendula, so the force vector
reduces to: f̃ = [0, Tθ], which corresponds to pure leaning action. Next we introduce an LQR
controller for controlling the upright position of the pendulum. THe following weighting
matrices are chosen:

Q =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , R = [1]
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Figure C-2: Top; absolute angle φ of the base pendulum and relative angle θ of the upper
pendulum versus time t. Bottom; applied relative torque Tθ versus time t. The top graph is
showing that θ is roughly positively proportional to φ. The lower graph shows the applied relative
roll torque Tθ. The system is disturbed by applying a randomly distributed roll torque Tφ to the
bottom pendulum.

Resulting in the following state feedback controller:

u = −Kx, (C-11)

with controller gains:

K =
[
−723.16 −328.71 −1680.4 −720.17

]
, (C-12)

Which implies positive roll and lean angle and rate feedback. A white noise torque disturbance
is applied onto the lower pendulum, to analyze the coupling between the upper and lower
pendulum angles. The results are shown in figure C-2. A proportional negative coupling
between φ and θ is observed.

C-3 Conclusions

From the double pendulum analysis, the following observations are made:

• A single inverted pendulum on a cart can be stabilized by accelerating into the direction
of fall. For the case of the bicycle, the lateral acceleration can be accomplished by
steering into the same direction. This stabilization prinicple is known as ’steer into the
fall’.

• The double inverted pendulum (not on a cart) can be stabilized by applying a relative
torque between the two pendula. This corresponds to balancing a bike at zero velocity,
using upper body movement.
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Appendix D

Parameter covariance

This section describes how the parameter uncertainty can be calculated using Matlab output.

D-1 Defintions

Suppose we have a measured signal y(t) and modelled signal ŷ(t, θ), which is a function of
the parameter vector θ. The error becomes

e(t, θ) = y(t)− ŷ(t, θ) , (D-1)

which is used to define the following commonly used sum of the error squared error criterium:

V (θ) = 1
2

n∑
t=1

[e(t, θ)]2 . (D-2)

For which we find the following parameter vector that minimizes the criterium according to:

θ̂n = arg min
θ
V (θ) (D-3)

D-2 Covariance definition

Next we introduce the parameter covariance function. According to Ljung 1999, the covari-
ance function is given by:

Pθ = λ̂n

[
1
n

n∑
t=1

ψ(t, θ̂n)ψT (t, θ̂n)
]−1

, (D-4)

where

λ̂n = 1
n

n∑
t=1

[e(t, θ̂n)]2 , (D-5)

ψ(t, θ̂n) = − d

dθ
e(t, θ̂n) = d

dθ
ŷ(t|θ̂n) (D-6)
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D-3 Matlab output defintions

The Matlab algorithms may either output the gradient (grad) and Hessian (hessian) of the
criterium with respect to the parameter vector, which is the case for the fmincon function.
These outputs are defined as follows:

grad = dV (θ)
dθ

∣∣∣∣
θ=θ̂n

= 0 (D-7)

hessian = d2V (θ)
dθ2

∣∣∣∣∣
θ=θ̂n

(D-8)

Other algorithms like the lsqnonlin may output the Jacobian (jacobian) of the error vector
with respect to the parameters:

jacobian = de(t, θ)
dθ

∣∣∣∣
θ=θ̂n

(D-9)

(D-10)

D-4 Expressing covariance in terms of Matlab output

Finally we analyze how to use the matlab output in order to derive the parameter covariance.
We basically want to derive λ̂n and ψ(t, θ̂n). Here λ̂n can be directly obtained by simply
calculate the error vector e(t, θ̂n) according to equation D-1 and sum the squares. The latter,
ψ(t, θ̂n) is more tricky and also depends on the kind op optimization algorithm you use.

We start of by linearizing our model ŷ around the optimum parameter configuration θ̂n. Lets
assume our model is continues and differentiable around the found optimum, so that the
following linearization holds for small deviations of θ around θ̂n.

ŷ(t, θ) ≈ ŷ(t, θ̂n) + dŷ(t, θ̂n)
dθ

(θ − θ̂n) , for θ → θ̂n . (D-11)

This result can be used to analyze the meaning of the grad, hessian and jacobian output,
since they are all computed numerically near θ̂n.
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D-4-1 Hessian method

Lets start of by writing out the criterium function V (θ), which is used for the grad and
hessian output.

V (θ) =1
2

n∑
t=1

[e(t, θ)]2 ,

=1
2

n∑
t=1

[
y(t)− ŷ(t, θ̂n)− dŷ(t, θ̂n)

dθ
(θ − θ̂n)

]2

,

=1
2

n∑
t=1

[y(t)]2 +
[
ŷ(t, θ̂n)

]2
+
[
dŷ(t, θ̂n)
dθ

]2

(θ − θ̂n)2

 ...
...+

n∑
t=1

[
−y(t)ŷ(t, θ̂n)− y(t)dŷ(t, θ̂n)

dθ
(θ − θ̂n) + ŷ(t, θ̂n)dŷ(t, θ̂n)

dθ
(θ − θ̂n)

]
.

Next we take the first derivative with respect to the parameters, which yields:

dV (θ)
dθ

=
n∑
t=1

[dŷ(t, θ̂n)
dθ

]2

(θ − θ̂n)

 ... (D-12)

...+
n∑
t=1

[
−y(t)dŷ(t, θ̂n)

dθ
+ ŷ(t, θ̂n)dŷ(t, θ̂n)

dθ

]
, (D-13)

which corresponds to the grad function and is zero at the optimum. The second derivative
corresponding to the hessian yields:

d2V (θ)
dθ2 =

n∑
t=1

[
dŷ(t, θ̂n)
dθ

]2

. (D-14)

Now we are getting somewhere, since dy(t, θ̂n)/dθ = ψ(t, θ̂n). So substituting θ = θ̂n, which
corresponds to the Hessian found at the optimum we find:

hessian = d2V (θ)
dθ2

∣∣∣∣∣
θ=θ̂n

, (D-15)

=
n∑
t=1

[
ψ(t, θ̂n)

]2
, (D-16)

=
n∑
t=1

ψ(t, θ̂n)ψT (t, θ̂n) . (D-17)

So the parameter covariance in terms of the Hessian becomes:

Pθ = λ̂n
[

1
nhessian

]−1
. (D-18)
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D-4-2 Jacobian method

Starting of with equations 2-3 and D-10 we derive:

ψ(t, θ̂n) = −jacobian (D-19)

So the parameter covariance in terms of the Jacobian becomes:

Pθ = λ̂n
[

1
njacobian · jacobianT

]−1
. (D-20)
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Appendix E

The Human Controller

In this appendix some of the more general properties of the human controller will be discussed.
The human can act as an closed loop controller; perceiving information through the sensory
system, processing the information through in the central nervous system (CNS) and interact
with the environment through the muscular system. This combined system is known as
the neuromuscular system. Different levels of human control are identified; compensatory
control, pursuit and precognitive control. The properties of the human controller are described
according to Herman van der Kooij (2008), van der Kooij et al. (1999), van der Kooij et al.
(2001) and McRuer (1980).

E-1 Neuromuscular system

The neuromuscular system represents the active part of the human controller contribution
to the combined man machine system. Figure E-2 gives an overview of the neuromuscular
control loop. The objective state is compared with the current state observed through the
sensory system. This information is then processed in the central nervous system, which
outputs neural stimuli destined to the muscular system. The system contains time delays
which are represented by τ . Also the activation dynamics of the muscular system is not
instantanius but show muscular lag. Finally, the admittance of the combined system has its
effect on the eventual movement caused by muscular contraction.

E-1-1 Sensory system

The sensory system provides information about the external world allowing for feedback
control. Without sensory feedback the human controller could only act as an open loop
feed forward controller, allowing errors to accumulate. The human body has many sensory
systems; visual, vestibular, proprioceptive, smell, taste, etc. The analysis of these systems
will be limited only to the systems involved with human movement control.
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Figure E-1: Human control during man machine interaction. The perceptual block converts
system input i, system output m and proprioceptive feedback ypp

into motor neuron commands.
Three levels of control are identified in the perceptual block; compensatory control, pursuit, and
precognitive control. The neuromuscular actuation system converts the motor commands to
manipulator output c, allowing for interaction with the system subject to control yc. The human
observer dynamics are omitted in this block scheme. Taken over from McRuer (1980).

CNS

τ

muscle

sensor

Hsetpoint position+
−

Figure E-2: Simplified block scheme of the neuromuscular system. The CNS acts as the actual
controller of the human body. It outputs motor commands which are translated into actual motor
output through the muscle block. The system dynamics are contained in H. The output position
of the system is then observed by the human controller through the observer block. The transport
delays are all represented by the τ block. The error which is defined as the difference between the
position and the set-point is finally fed back to the CNS to complete the loop. Based on Herman
van der Kooij (2008).
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Visual system

The visual systems allows for measuring light intensity and color coming from the environ-
ment. This information is sensed by the eyes, which form the sensors of the visual system.
This information is processed by the visual cortex of the brain, resulting in a continuous
’picture’ in time or ’movie’ of the external world. Using sophisticated image processing tech-
niques the brain is then capable of deriving relevant information from this picture. In the
case of bicycling the visual system could give information about the horizon, forward velocity
of the bicycle, future curvature of the road, etc.

Vestibular system

The vestibular system basically acts as the accelerometer of the human body. The vestibular
organs are located in the head behind the ear. They are also known as the ’organ of equilib-
rium’ because they can measure if the human is in balance. In practice this is achieved by
measuring the angle relatively to the vertical axis by making use of the acceleration caused by
the gravitational field g. In addition they are also well suited for measuring changes in the ve-
locity, i.e. if a person is falling the velocity is increasing, which is then sensed by the vestibular
organ. Among other parts, the vestibular organ consists of three semicircular shaped canals
and the otoliths. The canals are sensitive to rotational (yaw, pitch, roll) acceleration, whereas
the otoliths are sensitive to transversal (xyz) acceleration.

Proprioceptive system

The proprioceptive system is concerned with self sensing of the human body. For human
movement control, the two most important sensors are the Golgi tendon organs (GTO) and
muscle spindles. The Golgi tendon organs are located in the muscle tendons and are able
to measure tension. The muscle spindles are located in the muscle fibers and are capable of
measuring both muscle length and stretch velocity. The information of the proprioceptive
system is transported using the afferent sensory nerves. This transportation of information
leads to time delays, since the transmission speed it limited. Table E-1 shows some of the
properties of the proprioceptive system.

Nerve Diameter Transmission speed Type of sensor Stimulus
type (µm) (m/s)

Ia 12-20 70-100 muscle spindle length & velocity
Ib 12-20 70-100 GTO force
II 6-12 35-70 muscle spindle length

Table E-1: Some properties of the proprioceptive system (taken over from HMC reader, WB2407)

Sensor dynamics

The sensor dynamics can be modeled according to the appendix found in van der Kooij et al.
(1999), which is based on Borah et al. (1988).
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Muscle spindle model: afferent fire rate
position = 5(s+4)

s+20

Semicircular model: afferent fire rate
angular acceleration = 0.574s(s+100)

(s+0.1)(s+0.033)

Otolith model: afferent fire rate
specific force = 90(s+0.1)

s+0.2

Vision mode: afferent fire rate
distance head-visual scene = 1

Tactile model: afferent fire rate
force = s+0.01

s+0.1

The total neural time delay τ is estimated to be 100 ms.

Human observer models

Human observer models describe how sensory input can be integrated to form an optimized
observation of the human and the environment. A popular branch of these human observer
models is given by an application of the Kalman filter according to (Kleinman et al., 1970).
This filter combines noisy measurements (sensory information) and knowledge of the system
(human body dynamics) into an optimal state estimate of the system. It is beyond the scope
of this report to threat these models in detail. However, a detailed application of the Kalman
filter for human stance control can be found in van der Kooij et al. (1999). In addition, a
similar model which incorporates sensor adaptability is given by van der Kooij et al. (2001).

E-1-2 Central nervous system

The central nervous system (CNS) processes desired position and sensory feedback and gen-
erates motor commands (α-activation) to the muscles. The CNS therefore forms the heart
of human movement control. In a sense; the CNS is the human controller. The workings of
the CNS are highly complex and little is known about the way the CNS stores and processes
information. The CNS consists of the brain and spinal cord, which are connected by nerves
to the sensory and motory system.

E-1-3 Muscular system

The muscular system is the actuator of the human body. It uses muscular force to generate
joint torques, which allows the human body to move and interact mechanically with the
environment. The muscles are the means of actuation, they transform neural signals into
actual force. There are three kinds of muscles, but we will only focus on skeletal muscles,
which are interesting concerning human motion control. These muscles are activated by neural
stimuli and the amount of contraction is determined by the rate of firing stimuli, e.g. the
higher the rate the stronger the contraction.
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Muscle dynamics

Muscle force is not able to act instantaneous similar to a bang bang controller, but needs
some activation time to build up in strength. A simple model of these activation dynamics,
also known as muscular lag, is given by;

q(s) = 1
1 + τacs

e(s), (E-1)

where q(s) represents the muscle activation, e(s) the muscle excitation and τac the activation
time constant. Equation E-1 acts as an low pas filter, which filters out fast transitions, e.g.
it smoothens changes in muscular torques.

E-2 Control methods

According to McRuer (1980), the human controller can be separated into three subsystems;
compensatory, pursuit and precognitive control, which will be explained in more detail in this
section. An overview of the complete control system is giving in figure E-1.

E-2-1 Compensatory control

The compensatory control system is there to minimize errors caused by random commands
and disturbances. It is a continues closed loop controller acting only on the observed errors
between the desired state and actual state. The compensatory system is often described as
a they inner loop low level controller. The compensatory system forms the base for higher
level controllers such as the pursuit and precognitive control system. The compensatory
control system can be identified by using random perturbations applied at either the objective
function or as an external disturbance.

E-2-2 Pursuit

The pursuit control system is being used when the human controller has access to future
inputs and disturbances. For example, in the case of curved path following; the rider might
have access to future curvature through the visual system. This information is used by the
pursuit system to generate a optimized desired control sequence. This in combination with
the compensatory system gives a superior result compared with only using the compensatory
control.

E-2-3 Precognitive control

Precognitive control is the highest level of control. The rider executes a learned maneuver
in an open-loop way. In order to achieve this, the rider needs complete knowledge of the
system and perceptual information. This information is then combined to generate a series
of optimal neuromuscular pulses, resulting in a perfectly desired machine output. Learning
these movements is similar as training a neural network. In practice uncertainty and noise
are always presented, so compensatory control is still required.
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E-3 Summary

The human controller is capable of sensing (sensory system), processing (CNS) and actuating
(muscular system). Among other information, the sensory system is capable of observing;
image (eyes), accelerations (vestibular system), muscle length and velocity (muscle spindles)
and muscular force (Golgi tendon organs). The CNS consists of the brain and spinal cord
and is in itself the human controller. The muscular system forms the actuator of the human
body. The human controller has complex sensor dynamics and is limited by neuromuscular
lag and transport delays.

Three different human control subsystems are identified; compensatory, pursuit and precog-
nitive control. The compensatory system tends to minimizes the errors between the desired
state and actual state. The pursuit subsystem uses feed forward techniques to generate opti-
mized desired state configuration. The precognitive system forms the highest level of control
and can be seen as a trained neural network.
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Appendix F

Bicycle Simulator

To gain more insight in human rider control, a computer bicycle simulator is created. The
user controls the velocity and steering torque using a controller and receives visual feedback
of the 3D bicycle visualization. In addition, visual displays for the roll angle and rate, applied
torque and forward velocity are also added. The bicycle simulator is created using Matlab
and Simulink. Playing around with the simulator shows intermittent control and the necessity
of roll rate feedback when it comes to controlling the unstable weave mode. The unstable
capsize mode can simply be controlled using roll angle feedback only. It is possible to stabilize
the bicycle from velocities of roughly 3.5 m/s and higher, whereas stabilization in real world
bicycling is possible a way lower velocities. The simulator is somewhat limited since it only
gives visual feedback, important proprioceptive feedback is omitted.

F-1 Setup

The following hardware components are used for the simulator: Laptop (Compaq HP 8510w:
2500ghz, 2GD DDR2 RAM, Quadro FX570M) and gamepad (Logitech Rumble Gamepad
F510). The laptop is is running Matlab R2009b. The gamepad is simply connected to the
laptop using the USB port. The gamepad and the corresponding button functionallity are
shown in figure F-1. The analog left paddle and triggers are uses to control the steering torque
and forward velocity. The simulation can be stopped using the back button.

F-2 Software

The simulator is written in Matlab and Simulink. The actual ODE solving of the equations of
motion is done in Simulink. A 3D model of the bicycle and the environment are created using
3D Studio Max. The Simulink model is then compiled to C-code which allows for faster real
time running. Finally a Matlab GUI is written to provide additional feedback components.
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Figure F-1: Button functionality of the gamepad

F-2-1 Setting up the Simulink model

First the data acquisition for the game pad is set up. This is achieved fairly simple using
the ’analog input’ from the Simulink real time toolbox. The input signals are then rescaled
and applied to the bicycle equations as torque (left paddle) and change in forward velocity
(triggers). The back button is used to stop the simulation. The benchmark bicycle equations
(both linear and non-linear) are inserted in ODE form, by expressing the state derivatives as
a function of the state and input (ẋ = f(x,u, t)). A fixed step (0.02s, 50Hz) Dormand-Prince
solver is used.

F-2-2 3D bicycle visualization

A 3D model of the bicycle and environment is set up using 3D Studio Max. This model and
environment is then exported as a VRML97 world, which is supported by the Simulink 3D
animation toolbox. The coordinates of the bicycle are then coupled to the state and global
orientation variables of the bicycle, which are computed using the Simulink solver.

F-2-3 Compilation to real time C-code

The Simulink real time toolbox is used for creating fast running real time simulations. In
order to achieve this the real time windows target (RTW) is applied. The RTW does a
number of things, required to speed up the simulations and making it real time. First, the
Simulink model is compiled to faster running C-code. Secondly, the RTW reserves a small
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Figure F-2: Graphical User Interface of the bicycle simulator.

piece of memory with top (0 level) priority on the windows kernel allowing for super fast
processing. Thirdly, the RTW couples the simulation directly to the PC clock resulting in
real time simulations.

F-2-4 Matlab GUI

Finally a graphical user interface (GUI) is designed to incorporate additional feedback (figure
F-2. The 3D visualisation is added to the GUI as a virtual canvas. The steeringtorque,
roll angle, roll rate and forward velocity are plotted using regular plot commands, which are
updated during each simulation step.

F-3 Results

The following observations are made from playing around with the linear bicycle model sim-
ulator.

• Control seems to be done intermittently.

• The dynamic behavior of the bicycle changes as function of the forward velocity.

• The unstable capsize mode is easy to control using roll angle feedback.

• The unstable weave mode is way harder to control and requires well timed pulses of
steering torque.

• Adding visual roll rate feedback makes control of the unstable weave mode possible.
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• At forward velocities way below the weave speed, the system becomes uncontrollable.

• In general; controlling the simulated bicycle is way harder than real world bicycling.

• It is hard to control the steering torque precisely using thumb control of the game pad.

F-4 Discussion

The bicycle simulator gives some interesting yet limited results. For example, the observed
intermittent control is also described in literature by Doyle. In addition, the unstable capsize
and weave mode can be controlled by roll angle and rate feedback respectively, which is
similar to intuitive controller. However, the bicycle simulator is also limited, making it way
harder to control than a real bicycle. In particular the simulator misses the feel like real
bike; the proprioceptive feedback and vestibular feedback paths are missing and the thumb
control input feels less precise than a real bicycle steer. These limitations especially become
apparent when one tries to control the bicycle at velocities way below the weave speed, which
is virtually impossible.

F-5 Conclusion

The bicycle simulator provides a playful way of exploring the equations of motion of the
bicycle. It also is interesting yet limited when it comes to analyzing the human controller.
The simulator only gives visual feedback, whereas vestibular and proprioceptive feedback are
present in real world bicycling. For future bicycle simulators it is recommended to include
these feedback paths making it a more realistic experience.
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