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Abstract. From a smdy of the equati.ons of motion 
se·E up for a single-track vehicle it follows that 
three characteristic types of motion are possible 
for which the behavior of the vehicle can be theo­
retically stable or more or less unstable depending 
on the speed range. The method of calculation is 
applied to three different test machines. A separ­
ate consideration serves to eJq)lain the influence of 
the mechanical steering damper. 

The development of the mechanism of single-track vehicles has been carried out 
with very little theoretical effort; the motorcycle mechanism reached its present fonn 
essentially through empirical desiens. The possibilities of calculating this rather 
complicated cO~figuration were surprisingly little known although F. Klein and 
A. Sonmerfeld2 had as early as 1890 undertaken the theoretical treatment of the bicycle 
with success. Indeed, with relatively little effort it is possible to measure the 
controllability of a motorcycle, which has already been manufactured, exclusively by 
tests in such a way that the usual characteristics follow because only two variau1es 
need to be considered, the rake angle and the castor trail. Without a doubt, however, 
knowledge of the theoretical relationships is very important for the designer if optimum 
performance is to be achieved and the mechanism is to be further perfected. 

In the following the natural motion of a single-trac}c vehicle, particularly 
the frequency of the natural oscillations about the condition of steady motion is 
calculated. The equations set up by F. Klein and A. Sommerfeld2) for a bicycle we 
extended to be valid for a motorcycle as well. 

1. Set-up of Linearized E~ations of Motion 

1.1 Notation 

A single-track vehicle consists of two systems which can be rotated about a 
common axis (the steering axis): the front wheel with the fork, the handlebar, the 
light, the fender and the linkage i and the rear wheel wi,til the frame, the motor and the 
rider who is considered rigidly attached to the frame. Let us not take into account 
the spring suspension of the wheels since only straie;ht •. 1ine motion on a plane path in 
the neighborhood of upright equilibrium will be considered. 

1) Report from the Insti tu t .f'ttr Fahrzeugtechnik of the r£echnische Hochschule at 
Brunswick. 

2) F. Klein and A. So~nerfeld: the theory of the gyroscope. Vol. IV, Technical 
Applications. Berlin and Leipzig 1910. 
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Five coordinates are necessary to detennine the position of the vehiclez two 
coordinates establish the point of contact of the rear wheel, two angles give the atti­
tude of the plane of the wheel, and one coordinate detennines the angle between the 
frame and the plane of the forward wheel. There is an additional requirement that both 
wheels must touch the ground. With five degrees of positional freedom, the vehicle 
nevertheless has only three motion degrees of freedom: leaning of the plane of the 
frame (roll), rotation of the hinged parts about the steering axis, and the forward 
motion whose direction has already been detennined by the position of the front wheel. 
'!hUB, as in all systems with rolling motion, we are deal:lng with a non-holonomic system, 
i.e. the vehicle can arrive at any of its 00 5 positions through a series of permissible 
motions, but it cannot reach every infinitely close position by an infinitely small motion. 

The calculation is carried out for small angles since integration of the equations 
of motion, after substitution of the non-holonomic rolling condition, is possible only 
after they are linearized. 'lhe notations,part of which elre shown in Fig. 1 and 2, are: 

a 

cl ' c2 

Cl to C3 
Fr· v/ViT" 
g 
h 

hI' h2 

JI, J2 
k 
K '"' k/J... 
.1,- c2 - cl 
L 

M:L,~ 
1llJ..R, ~R 
M • m:tl~ 
Mo,Mn 
NI, N2 
I' 

1'1' 1'2 

R 
sl, 8 2 

t 
U, V, W 
v 
x, y, z 
Y 

Yl • Y2 

Distance of the imaginary separation point between the front and rear 
wheel system from the point of contact of the front wheel 
Distance between the point where the steering axis intersects the 
ground and the point of contact of the front wheel (castor trail) and 
the rear wheel, respectively 
Constants 

Froude number 
Gravitational acceleration 
Height of point of application of reaction force Y 
Distance of the front and rear wheel system center of gravity, 
respectively, from the track 
Mass moment of inertia of the front and rear wheel system, respectively 
Radius of gyration 
Inertia ratio 
Wheel base 
Wave length 
Mass of front and rear wheel systems, respectively 
Reduced mass of front and rear wheel wIth motor 

Mass ratio 
Reaction moment of the steering damper and of the forward wheel 
system, respectively 
Angular momentum of front and rear wheel, respectively 
Horizontal distance between the point of application of Y and the 
vertical through the front wheel point of contact 

Distance from the projection of the c.g. onto the track to the point 
of contact of the front and rear wheel, respectively 
Effective radiuB of front and rear wheel 
Distance from the front and rear vlheel c.g. to the parallel to the 
steering axis passing through the corresponding point of contact 
Time 
Space-fjxed coordinates 
Velod.ty 
Body-fixed coordinates 
Heaction force acting on the steering axis in the vertical direction 
(y direction) 
Vertical reaction force acting at the point of contact of the front 
and rear wheel, respectively 



z 

a:..,,e 
'Y 
&1' 02 
.A 
cr 
'C 
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Heaction forco acting in the steering axis normal to the plane 
of the wheel 
Heal and imae;inary part of fl 
Handlebar deflection an;::le 
Tilt angle of the front and rear wheel, respectively, with respect 
to vertical (bank angle) 
Frequency parameter 
Rake angle 
Reduced time 

it .. rtl - fJ2 
...fl-

Angle between the front and rear wheel, respectively, and the mean 
plane in the direction of motion 
Angle between planes of front and rear wheels (steering angle) 
Angular velocity of a wheel 
Reduced frequency with roots Al to il'l • 

j!.l 

Fig. 1 Single-Track Vehicle 
a Steering axis, b Vertical through the point of contact PI of the 
front wheel, c Vertical through the point of contact P2 of the rear 
wheel, d Track, P Point of intersection of a with the road, 51 and 
S2 Center of gravity of front and rear 'wheel system, resp. 0- Rake 
Angle (angle between a and b), Y Steering deflection angle about a, 
~l and f Angle between front and rear wheel planes, resp., and 
the mean p~ane of motiQn, f) 1 and 02 Tilt anglEl of front and rear wheel 
planes with respect to vertical, hI and h distance from points S and 

2 1 
S2 to d, ~ and r2 Distance from the projection of c.g. on d to point 
of contact of front and rear wheel, cl = PIP Castor trail, c2 - P2P, 
~ G ~2 G c2 - c1 Wheelbase; x, y, z Body-fixed coordinate system; U, V, W 
Spaced-fixed coordl.na te system, '0 rotation vector 
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Fig. 2 Forces on Single-Track Vehicle 

a, d, Pl, P2, P, ~, S2' 0-, hl' h2' r l , r
2

, c
l

' c as in Fig. 1. Also: 
b and c Parallels to a through Pl and P2' A Point2of application of the 
vertical reaction force Y, r Horizontal distance between A and Pl , 81 
Distance of point Sl from b, s2 Distance of point S2 from c, ml and m2 
Mass of front and rear wheel systems, resp. g Gravitational acceleration, 
Y Vertical reaction force in the steering axis, Z Reaction force acting 
on the steering axis normal to wheel plane, Yl and Y2 Vertical reaction 
force at Pl and P2 

1.2 Geometric Relations 

There is a geome tric relationship between the tilt angles 6'1 and (!) of the 
front and rear wheels, respectively~ If we consider the motorcycle with unaeflected 
handlebar to be rolled to the right.:'), for example 8 1 • t). Let the angle Y be the 
handlebar deflection angle, measured about the steering axi~ (considered as axis of 
rotation of the hinged parts); let it be positive to the left and negative to the right. 
Now if the handlebar is turned to the right (through - Y), then the tilt of the front 
wheel increases because of the inclination of the steering axis through the rake angle 0-
wi th respect to vertical; the increase is the component of the angle )I about the track. 
According to the laws of small rotations, this component has the value - }I sin 0-. Hence 

iJ 1- iJ ~ - Y >lill a . ... ...... (I). 

The component of the angle )I about the vertical axis amounts to JI cos oand is equal 
to the angle <1>1- ~ 2 between the planes of the front and rear wheels with respect to 
the plane of the mean direction of motion (of. Fig. 1): 

(/'1· (I'~ --, Y W~ a . .. . ...... (:!). 

1.3 Determination of the Non-holonomic Relationship 

Consideration of the features of the motion leads to the non-holonomic rolline 
condi tions which is still requirtJd, r~g • .3. If the veloc:i ty v of the front wheel in its 
track and its angular velocity tp 1 ... d fl/dt about the vertical are regarded as given, 
then the motion of the rear wheel is also determined. For the rear wheel is hinged at 
the point of intersection P of the steering axis (with the road) which moves with the 
front wheel and must always follO\-1 this point. The point of intersection P has a velocity 

.3) Terms like right or left are always with respect to a driver sitting in the seat. 
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. 
v in the track of the front wheel and a yelocity c rp l' noma1 to the plane of the 
front wheel since it rotates at a rate 1'1 about tne point of contact Pl (between the 

wheel and the road) which is a distance cl = PIP from P.. The distance c1' the so-called 
castor trail, is one of the most important quantities of the system. 'lbe track of the 
rear wheel makes an angle CfJ 1 - Cf>2 with that of the front wheel. The point P there-
fore has a component of motion of 

normal to the track of the rear wheel. This component of motion of the point of 
intersection can also be expressed in terms of ~ts distance c2 fram the point of contact 
P2 of the rear wheel and the angular velocity Cf2 =0 d CP,../dt of the plane of the frame 
about a vertical axis. Thus for small angles we have tfie non-ho10nomic condition 

'!he velocity component v* of point P in the direction of the rear wheel track 

differs from v only in second order quantities. 

1.)~ Determination of the Applied Forces 

The forces which act on the vehicle and the reaction forces "'ill now be determined. 
Forces acting up are positive; those acting down are net~ative. Hith g as gravitational 
acceleration and with m1 and m2 as masses of the front and rear wheel systems, respectively, 
the two mass forces ~g and m2g act at the centers of ,'gravity Sl and S2. Heaction forces 
act at the hlO points of contact and at the steerinr, jolnt (bearing of fork in the frame). 
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For the vertical reaction forces it is only nec:essary to consider the forces 
vlhich oppose the weirpt during rectilinear motion under equilibrium conditions since, for 
small deviations from rectilinear motion, they suffer only small changes of higher order. 
The vertical force 

acts at the point of contact of the rear wheel and the vertical force 

acts at the point of contact of the front wheel. Here r l and r2 are the horizontal 
distances of the centers of gravity from the points of contact and ..L is the so-called 
wheelbase, cf. Fig. 1 and 2. At the steering joint a reaction force and a reaction 
moment must be applied. A vertical force 

acts on the front wheel system. 

Y=-Y~+m~y=m2Y(I')/)-mllJ(l'lfl) .. (u). 

acts on the frame. If the imaginary point of separation between the front and rear 
wheel systems is a distance a behind the front point of contact Pl , then the reaction 
moment acting on the front wheel system (right hand rotation positive) is 

Mfl, = l'~(I-II)-II/~IJ(I-'(j-I') .... (11,1). 

The. corresponding reaction moment acting on the frame is - MR. 
However, the thrust bearing can be built in at any arbitrary point on the 

steering axis and hence by a displacement on the steering axis the vertical force and 
moment can be expressed as a single force. For MR • 0 it follows from Eq. (10) and (8) 
that 

11= I/Ijl'l'/(-III~I'~+ 11/,1',) . ..... (II). 

The vertical reaction forces are then to be applied at the steering axis at a distance 
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ahead of the forward point of contact. The height of the point of application of these 
reaction forces is 

The horizontal reaction forces will now be determined. The forces + Z which 
transmit the lateral motion, act at the steering axis normal to the plane of the wheel. 
Their magnitude depends on the instantaneous state of the motion and can only be 
determined if the form of the motion is known. In any case, they are of first order 
and must therefore be considered. The height of their point of application is not needed. 

In addition, there are reaction forces acting on the steering axis in the direc­
tion of motion; they transmit the forces which are necessary to drive the front wheel. 
If the resistance of the front wheel to rolling and forward motion is neglected, then 
for rectilinear motion under equilibrium conditions these reaction forces vanish, and 
for small deviations from these conditions, they are ()f second order. 

For a handlebar deflection away from the middle position, the center of gravity 
81 and 8 move down slightly. However,this gives rise only to terms of second order 
which witl not be considered here. The corresponding force terms nevertheless enter the 
equations of motion through the reaction forces Y at the steering axis (cf. below, 
Section 1.6). Centrifugal forces IIlJ.. v <Pl and ~ v<P 2 act at the centers of gravity 
~, and 82 and perpendicular to the planes of the wheels. 

'!he angular momentum N of the wheels depends on their mass moment of inertia J, 
their angular velocity W, and their effective radius R 

N ~ .1 w .. ~ .1 'vI Ii .. , ...... (1-1). 

The angular momentum of the motor is to be added to that of the rear wheel if the engine 
rotates in the same direction as the wheel; if the direction of rotation iscpposite, then 
the momentum of the wheel is decreased by that of the motor. It is useful to regard the 
angular momentum of the motor as an increase or decrease of the moment of inertia of the 
rear wheel (taking into account the gearing ratio between the wheel and the motor). Thus 
for the front wheel we have Hl .. JI viR and for the rear wheel with the motor N2 • J2 viR. 
'!he effective radii are equal for the front and rear wheels. 

A rolling motion .about the track sets up a gyroscopi<; force about a vertical axis; 
at the. rear wheel with r9 2 • d (} 2/dt its .magnitude is - N2 {} 2 and at the front wheel 
with 8 1 .. d a lldt its magnitude is - N1 8 l • Rotation about a vertical axis sets up 
a gyroscopic moment about the track; it is N2 P2 for the rear wheel and Nl ~l for the 
front wheel. 

In order to be able to write down the equation of motion, we must detennine the 
time rate of change ilp of the angular momentum vecto:r ;;a p about the axis of rotation; 
this must be equal to the moment ?nE about this axis. The space-fixed coordinate system 
is designated by U, V, W and the boay-fixed system by x, y, z (cf. Fig. 1). With 0 as 
angular velocity vector of the front and rear wheel system about the points of contact 
and :erel as angular momentum vector with respect to the body-fixed coordinate system, 
we have 
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The angular veloci ty vector '0 has component i;, <j>, and 0 in the x, y, and z directions. 
Here 8 and if are written instead of &11 and e 2 or cp 1 and q> 2. Wi th Jxx and JYY' as 

mass moments of inertia of the system about the x and y axes, and with Jx:y, Jxz and Jyz 

as products of inertia in the x:y, xz and yz plane s respectively, tb.e angular momentum 25 
is co~osed of the corresponding components Jxx e - Jry f, - Jxy f) + Jyy 4' and 

- Jxz 8 - Jiz if;, respectively. 

The cross product 15 x :8 leads '00 terms in which the angular velocity occurs as 
a second order term. Road tests show that for the natural motions under consideration 
the angular velocity can also be regarded as small and hence quadratic velocity tems 
may be neglected. , '!hus, for the components BU, BV' ~1 of the time rate of change of 
angular momentum '.8p in th.~ U, V, and W dire?~ons with ~ Mv, and Mw as corresponding 
components ofmand with t) .. d2 8/dt2, and cp- d2 cp/dt2, we get 

J r:x {) - .J xu ii) = M u = iJ II , 

- J:xu{) + ./1/11 ip = MI' = Bv, 

- J;{ z& - J 1/2 iiJ = Mil' == iJ w 

I ("I) 

The component Mw in the W direction causes a change in the reaction force !.Y, but this 
will be regarded as small and of first order with respect to the gravity force,' so that 
its moment about the axis to be considered remains second order. 

The equations of motion can now be stated for the two systems for the U axis 
(the track). In doing this, we should immediately add the two equations algebraically 
since vectorial addition will result in tems of secorld order only because it has been 
assumed that the angle cP 1 - cP 2 between the tracks of the two wheels is small. 

1.5 ~atlon of Motion for Rolling about the Track 

For small angles and with J 1U and J2U as moments of inertia of the front and 
rear wheel system about the track, J1UV and J 2UV as products of inertia of the front and 
rear wheel systems in the plane of the wheels, Nl and N2 as angular momentum of the , 
front and rear wheels, and with ml and ~ as mass of the front and rear wheel systems, 
respectively, the equation of motion for rolling of the vehicle about its track is 

JJIJ ,ij!, + .Iw ,jj ~ - '~l/II' (i~, - '~2111' ii)~ = N I {PI + 1 
+ N ~ (P~ ~ f) (/III/~ I (PI, ~ II:~ h~ IfJ~) ,+ ,"'d~ 1:1 {} I + I (17) 

+ lII~y,,~a~+ Y(cl--f)Old,gIJ-l (CI-f)O~ctga) 

or with Y given by Eq. (9) 

.1 IIJ ,ij I + ./21;02 -.1 JI/ I' (i!1 -.J2lI V ip~ = N I {PI + 
+ N~ (P~ -t 'f) (11/ 1 "I (P! + 1f12 h~ tP2) + 
of Y(lIIlhIOI-I-III~h~O~)+ (l~), 

I Y (1// 2 '/ - 1111 1/) ({; I-/') (O! - 0 ~:I ctg IJ 
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If the kinematic condition of Eq. (1) is introduced, then the last term of Eq. (18) can 
be written 

it vanishes if the front and rear wheels lie in a plane, and corresponds to the drop 
in c.g. wi til handlebar delfection, which has already been mentioned. 

1.6 Moments about Axes Parallel to the Steering Axis 

It would now appear appropriate to set up the equation of motion for rotation 
about vertical axes. However, it is better not to use these axes, but rather those 
which are parallel to the steering axis and pass through the points of contact (cf. b 
and c in Fig. 2). We also set up the equations for the two systems separately in order 
to achieve better insight. In doing thiS, the reactiotl forces at the point of separa-
tion must be taken into acoount. At that point the forces + Z act normal to the plane 
of the wheel and + Y act in a vertical direction. In additIon, the reaction moment of 
a steering damper-must be introduced into the calculati.on. In this connection we are 
dealing with a rotational moment about axes parallel tel the steering axis; it is - Mn 
on the hinged part and + Mn on the frame. The moment is introduced through a friction 
damper and is therefore to be considered constant. The variations which arise in prac­
tice because of the difference between coulomb and sliding friction will not be considered. 

The reaction forces:. Y and:. Z set up a moment (z + Y 82) c2 cos cr about a line 
through P2 and parallel to the steering axis, and - (Z + Y 91 ) cl cos a- about a parallel 
line through Pl. A small rotation about the steering ~s or an axis parallel to it can 
be broken down into a component about a vertical line (which enters into the calculation 
as a cosine component) and a component about the track (as sine component which is 
negative because the roll resulting from a handlebar dElflection will be to the left, in 
the direction of negative rotation of the roll angle e). The corresponding components 
of the mass forces about the vertical and about the track oppose these component rotations. 
For the front wheel system, the tire rate of change BSt of the angular momentum BSt about 
the steering axis with JIV as moment of inertia of the front wheel system about a vertical 
axis through Pl is given by the relation 

list = Ii" C(.~S a - li/l ~ill (J = I 
= (.111' ~I- .Il1Jl' ~t) cos IT -, ... , ' (1\)). 

-(.flU IJ I - .IWV/fJ,) l;illlI 

One component of the gyroscopic moment abo-qt the steering axis or parallels to it arises 
from the rolling of the machine at a rate 8 about the track (cosine component), and the 
second comes from a rotation about a vertical at a rate 4' (sine component); both act 
in a negative direction about the steering axis and gi'~e 

,- N I (j I eos 1I + (j'l !iiil 1I), 
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In addition the moments due to centrifugal force" gravity and the reaction forces Z 
and Y must be considered. The lever arm of the centrifllgal force is (cf. Fig. 2) 

S2 = "2 sin (] + h/cos (]) ...... (~!O) 

for the frame system, ana 

for the front wheel system. 

1.7 Equation of Motion for Rotation about the steeri~ Axis 

The equation of motion for rotation of the front wheel system about the steering 
axis is then 

(JI V ifl - J iU v .01) cos (] - (Jill /j 1 - Jill v PI) sin (] = r 

=-Nl(bICOS(]+~ISin(]),.-mlslv~l- I 
- ttl 9 s {} - Y c iJ cos (] - Z c cos (] ,.- M u 

111 11 '. 
. .. (~:t) 

and the corresponding equation for the rear wheel system with J2V as moment of inertia 
of the rear wheel system about the vertical axis through P2 is 

(J2V P2 ~ J211 V ij~) ~o~ (] - (~21~ij~ - Jau V.if2) ~ill (] = I 
- N2(02CUS(]+({J28I11a)-m2s2vp2- I 
- m~ Ii S2 02 + Y (;2 {)~ COB (] + Z C2 cos (] + Mo 

........ (~·3). 

From Eq. (22) and (23)" by e limina ting the unlmown reacti on force Z, we get the 
equation of motion for rotation a bout the steering axis 

C2 (( J 1 V cos a + Jill v ~in u) ip I ,.- (,/ III v cos (] + 

+ JIVl:Iiu(])iJll + CI[(.J2I'cosa + J211V tliIlU)if2-

- (.J~v v cus a + .J~lJ sin a) .0 2] = - f (N 1& I c2 + 

+ N 2 iJ 2 CI ) cut; a + (N 1 tPl (;2 + N 2 (f2 el ) sill a]­

- v (C 211111l1 tPl + t:11/I2S~(P2) - 9 (C:2 111 1Il j {}1 + 
+ (;1 m2 .~~ '{}2) + 

+g(;1 /;2(l}2-{}1)( m~1-m/j )COHlf+(cl-eJMo 
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1.B Introduction of the Non-holonomic Equation 

With c2 - cl .. .i.. and setting ~l - Cf2 .. t, ¢l - 12 -1 and CPl - ~2 -if 
we get the following foms from Eq. (4): 

lqJ 2 = vtp + /:1 ip . .... ' .... (26), 

I ~1 ="' V tjJ + c2 ;p ......... (27) 

and 

I ip~ = v tjJ + C1 ;p . ........ (28). 

By means of Eq. (25) to (2B) the angles 'Pl and 'P2 together with their derivatives can 
be expressed in tems of 'If in the equations of motion. If we also note the fact that 
1f - )I cos (j and hence J from Eq. (1), 

then instead of Eq. (lB) we get the following equation for rolling about the track 

and according to Eq. (24) we get for rotation about the steering axis 

f
et T (Jl V cos (I + lllll' sill (I) + 

~ 1 +1(J~vcoS(l TJ~lJl'sill(l) 'ijJ-

- (:~ (Jwv COil aT Jw sin a) il l -

- C1 (J~u V cos a + 12u Ilill (I) iJ 2 + 

+ l1 (J I V co:; a + .J I III' tliu (1) + 

+ 1 (J~v cos <1 + .lw V !liu (1)1 v 'If + 
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IJ ( ). IJ ( ., .') • +T (!~NJ+rJN~ ·V'HlUtJ+T t:2/11JSJ+Cil/l~1I2 .'P+ 

~ 

+ 7 (e~ m j s, + ("I ma s~) .'P T Y (c~ 1/1 J S I ·0 J T (!j ilia s~{) 2) -

-!J(·JC~ (m/i- m, 1)VJ HiO,J-(C j -eJ Alu =0 
............. (:U). 

Eq. (31) contains the essential terms which cause steering 4eflection. Thus 
on the left side of the equation the two terms with the factor clV'/f/L (eleventh and 
twelfth sununand) take into account th~ driving forces which the frame system exerts on 
the hinged part. A pressure in the plane of the frame and acting on the hinged system 
obviously causes the front wheel to turn into the plane of the frame (like the pulled 
wheel of a wagon). The next six terms (with Nl and N2 ) give the gyroscopic action 
which are due ~ a steer::ng deflection or rolling of the machine. The four folloWing 
terms (with v"I'/i.. and v If/J/L) take into account the centrifugal forces. The next two 
terms are for the moment due to gravity which seeks to rotate the handlebar and the 
frame about the steering axis when the motorcycle is tilted, hence the static steering 
forces. The following two terms (with g'l/') correspond to the drop in c.g. position 
(which has already been mentioned) when the handlebar is deflected, and the last terms 
with MD include the effect of a friction steering damper. 

With the aid of the kinematic relationship, Eq. (29), it would be possible to 
reduce the three angular coordinates 8 11 ~ 2 and 'I/J contained in Eq. (30) and (31) to 
two. For the purposes of calculation, however, it is simpler to add the kinematic 
relationship as a third condition equation. 

1.9 Solution of the Equations of Motion 

Setting 

where t is the time, it a frequency parameter and Cl , C2, C , are constants, we get from 
Eq. (29) to (31) the linear equations for determining Cl , ~2' and C

3 

(:.It), 
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c, [--- c~ A2 (.1 iii V CIl:; II + ,I II! sill II) -t C~ JV, .( cos II + Y C~ III, s ,] + 
+ (:~ [- C, .(2 (J 211 V CIIS IT + ,/2/1 :;ill (J) +- C, JV ~.( eus IT + Y c1 //I~ .s~ I + 

t (.'a {A2 [¥ (.1 i I' elln II + ./1/1\' :-;iulJj + i (.J 2v eOn (J + ./2111' nill 0')1 + A /I (1 (.1 I V COn (J t- .11/1 V :-;iu(1) + 

c, .. )] A a 2 V -\ -i (.J~v co,; (J + .J~LJ I' nln a +- T (N ~ q + JV, 1'2) nill ti + T (j'~ N I I /;, IV~) niUlf + 

Eq. (35) is not homogeneous since the constant frictional damping occurs in it. To 
begin with, however, the damping will be set equal to zero, i.e. the motion is considered 
without the use of the steering damper. 

Eq. (33) to (35) are now non-dimensionalized by introducing a reduced frequency 
...fL and a reduced time 1/ defined by 

{)=AI/v, T=>ul/I .. 

In this way, insertion of numerical values gives information concerning not just one 
machine, but all machines with the same relationships clf masses, inertias, lengths, 
and gyroscopic terms. Since the systan moves under the: influence of gravity, the Froude 
Number Fr • vi 1/ g L occurs in the equations. 

'!he followiI€ abbreviations and ratios will bEl used in further calculations: 

f = I fFr2 = (ll/o~, 

M = //1 1/1112 as mass ratio 

KlIl = klv/I, KII' =:: 1'lv/l, K,Llv == k,uv/(, 

/,' w = k~1111, 1\ 21' = 1'-2 V /1, J( ~/J V = k~u 11/1 

as inertia ratios (with k 0: V Jim as radius of gyration, J .. JlU, J lV' JlUV, J 2U' J 2V 
or J2UV, m • to, or m2 , subscript 1 and 2 for the front and rear wheel system, respectively, 
subscript U ana V vaIues which come from the moment of inertia about the U and V axes, 
respectively, subscript UV for val ues which come from the centrifugal moment in the UV 
plane). '!he two wheels have the same moment of inertia Jl, but according to Section 1.4 
the moment of inertia of the motor Jmot is to be added to that of the rear wheel; thus 
J2 • J l + J mot• The calculation is simplest if the radius of gyration kR .. V JlImlR 
of the wheel without the motor is retained with mlR as reduced mass of the front wheel (i.e. 
of the wheel alone) and a reduced mass m2R is introduced for the rear wheel \vith the motor; 
this amounts to 
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In the dimensionless representation, the follO\dng additional notation is introduced: 

as gyroscopic mass ratio of the two systems, Ka • kalV1R as gyroscopic inertia ratio 
wi th R as tho effective radius which is the same for both wheels and 

HI == hi/I, H~ = h2/1, Ci = el/I, C2 = c2 /1, 

Ri = rl/I, R2 = r2 /1, R' =- rll, SI:= 51/1, S2 = $2/1 

as length ratios. further, from Eq. (14) 

While Eq. (33) remains unchanged, Eq. (34) and (35) now go over into 

and for Mn • 0 correspondingly 

with 

IX 11 =- M (Kru .o~ -/11 1). 

01
12

= K~U.Q2_1 11 2 , 

IX Ja = - M Kru v .0 (C'2.o + I) - K~u v .0 (Ci SJ + I) -­

-.0 Kit (Cj M~k + ci Mlk) - Kft (Mlk + M2k)--

-!J (C2 HIM + Cj H2.) - (M HI + H 2) 1-

+f(R2-M Ri)(Ci- R'), 

01 21 = - f.)2 Cli M (Kfu sill (1 + Kru v cos er) 1-

+ f.) Ci Mlk K~ coser +tM C5SI, 

01 22 = -.o~ Ci (K~u sill 0" + Kiu v cos (1) + 
+ [J Ci M2k K~ cos (1 + t Ci S2 and 

OI~a =.02 [C22 M (K~v cos cr + Kfuv sin (1) + 
+ Ci 2 (K~v cos (1 + K~uv sin (7)] + f.) lca M (Krv cos (f + 

T Kfu v sin (1) + Cj (K~v cos (f + K~u v sin IT) + 

+ K~ sill a (Cj2 M2K + Cp Mlkl1 + 
+ K~ sin (J (C~ Mlk + (.'j M2K ) +.0 (M C:i a SI +C:2 SJ+ 

+ M C2 SI + Cj S2 - tCi C~ (m - M Ri) sin 0". 
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The system of the three equations, Eq. (33), (31) and (30), which are now homogeneous 
and linear, has solutions only if the coefficient determ:i.nant vanishes 

()(" (X J:! ()(n 

/). 
(X :.!J ()(:!~ ex :!~ =0 (:lH) 

- I 19 (f 

This requirement gives a fourth degree equation for..fl because the sum of the orders of 
the differential equations is equal to 4. Thus the systan has two oscillations. They 
are stable if all four roots have complex values with negative real parts. In this 
case there are two damped oscillations. On the other hand, if two real roots occur, 
then the motion is stable if they are negative. 

Evaluation of the coefficient determinant leads to an equation for ..n- of the 
form 

with the c. values as constants of the vehicle. Explicit expression of the roots of 
this algebraic equation of fourth degree as functions of f is not possible in practice. 
Hence numerical calculation must begin with the detenninant. For this purpose, the 
dimensions of the motorcycle and its moments of inertia must be determined. 

2. Applications 

2.1 Calculation of the Natural Oscillations of Test MacInnes 

The moments of inertia of the front wheel system and of the wheels of some 
machines were determined with the aid of a bifilar suspension; the moments of inertia 
of the frame with rider were determined by suspending them about the individual axes 
of rotation on an oscillating turntable. The investigat:lons were carried out on three 
typical single-track vehicles: a scooter (vespa), a light motorcycle (Dflrkopp MD 150) 
and a heavy motorcycle (BMW R 51/3) wi th and without passenger. Fig. 4 to 6 show the 
inertia ellipsoids of these machines in the plane of the wheels; Table 1 contains the 
basic quantities. 

These basic quanti ties must now be substituted into the coefficient determinant, 
Eq. (39). The fourth degree equations (for the four roots J1..l to fl4 of.f1,.) which, 
result when Eq. (39) is expanded out contain f as a parameter. They are 

{JI + IH,'J ua + (W,7 - 17 ,Ii t).!P -t (6,79 - 12,tl f).!J + 

+ (1,64t-I,rd)t=O, 



- 16 -

for the Vespa scooter, 

fl" + 3,9 S:P + (4,65 - 6,75 1).02 + (3,38 - 4,74 t) .Q ,­

+ (6,34 f- 1,32) t = 0, 

for the Dtlrk;opp machine, Type MD 150, 

Q4 t 4 D3 + (5,59 -5,61 t) f)2 T (3,08 - 3,84f) f) T 

+ (6,02 f - 1,05) t = 0 

for the BMW machine, Type R 51/3 wi th driver alone, and 

.Q4 + 4,48 D3 + (5,76 - 5,68 t) Dt. + (2,36 - 3,591).0 + 

+ (b,44f-O,803) t = (I 

with passenger. After f was substituted, the roots of..n. were determined by iteration 
and collected in Table 2. In all cases there were two real and two complex roots. It 
can be seen that corrq:>1ete stability occurs only in the small region from v F::f 20 to 
30 km/hr for the motorcycles and v ~ 30 to 40 km/hr for the scooter. 

Fig. 4 
Inertia ellipsoids of the Vespa scooter in the plane of the wheels 
U and V space-fixed coordinate system, a1 and a 2 ellipsoid of the 
front and rear wheel systems, resp. with principal axes gl - gil 

d hi I I I 
an 1 - hl' and g2 - g2 and h2 h; respectively 
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Fig. 5 
Inertia ellipsoids of the Dtlrkopp MD 150 machine in the plane of the wheels 

Notation as in Fig. 4 

V,J) 
J 

/ 
L 

Fi~i;6 
Inertia ellipsoids of the BMW R 3 machine in the plane of the wheels 

Notation as in Fig. 4, solid lines for solo operation; 
dashed curve a2 holds for operation witrL passenger (dashed) 

We now insert the four roots.!ll to Jl 4 into Eq. (33) (37) and (38) and 
detennine Cl to C .n. iCC . ' 3· 1 g ves 11' 21 and C·U • J'l gJ.ves C C and C t 
Using the expressions of Eq. (32) and adding give~ 2 12' 22 23 e c. 

ill = A Cll e!)'~ + B CI~ eO,T T C CI:J eO,T t-} 
· . (41), 

T DC 14 eO,T 

'{}2"" A C~l efl,T + B C22 eO,T + C C2:J eO,T +} 
· . (42), 

1- /) C
21 

en•T 

1jJ = A Cal rD,T + 8 C:J~en'T + C C:1:leO,T +} 
T D C

a1 
eO,T 

· . (43). 
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Table 1. Basic Parameters of the Test Machines 
--_._-" 

l\;otation Vespa 
i?t£rigBP B~o~o51/3 ~pa~~ Scooter 

-------- -~- "' 

Tuss of the front wheel s~rstem ~ kg s2/cm 0 0 01424 0 .. 02242 0.03711 . 0.03711 

Height of cog .. of front ",heel hl cm 3603 49.3 54.2 "54.2 
system 

Horizontal distance of cog. r l cm 700 11.4 13.2 13.2 
from Doint of contact 
(front wheel) 
Castor trail cl cm 8 0 5 10.5 8 8 

Distance of c.g o from line sl cm 4.44 12.6 12.7 12.7 parallel to steerin~ axis 
r¥d throu§h ~oint 0 contact ront wh~el 
Moment of inertia about V 
axis front vJhee1) 

J IV kg cm s2 4 11.6 20.2 20.2 

Moment of inertia about U 
'.axis front wheel) 

J1U kg cm s2 28 69 135 135 

Product of inertia in UV 
plane (front wheel) 

J1UV kg cm s2 -10.5 -18.1 -36 0 4 -36 .. 4 

Homent of inertia of front J l kg cm s2 00 84 4.6 6.5 6.5 vJhee1 about wheel axis 

Mass of rear wheel system m2 kg s2/cm 0.1588 0.1464 0.2161 0.2861 

Hei~t of c.c. of rear wheel h2 cm 
s;y:s m 

60.2 70.2 55.0 62.9 

Horizontal distance ofCc. g• r 2 cm 3103 43 .. 3 52.4 44.1 from ~oint of contact rear 
wheel 

Distance of intersection c2 cm 125 .. 8 13905 151 151 point of steering axis from 
rear point of contact 

Distacce of cog from steerinB 
axis rear wheel S2 cm 48 03 7008 7108 68 00 

Moment of inertit about V 
axis rear wheel 

J2V kg cm s2 340 360 720 720 

Homent of inertia about U J 2U kg cm s2 1210 850 1110 2100 axis Crear wheel) 

Product of inertia in UV J 2UV kg cm s2 440 400 670 850 plane Crear wheel) I I ! 
Homent of inertia of rear J

2 kg cm s2 105 600 6 0 5 6 0 5 wheel and motor 

Wheelbase L cm 11703 12900 143 143 
Effective wheel radius R cm 17 08 3007 3204 3204 

-

+-2705 26 0 9 26.9 Rake angle () Grad 21 

I 

--_. 

Horizontal distance of Doint r cm 2041 5 .. 43 6.46 5056 of application of reactlon 
forces from point of contact 
Radius of gyration of the wheel kR cm ! 14.2 21.2 

1 
23 23 

l'Iass of front wheel mlR kg s2/cm 0000415 0 0 0102 0.0125 000125 

Reduced mass of rear wheel m2R kg s2/cm 0 0 0074 0.0133 0 .. 0125 0 0 0125 
with motor 
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The four constants, A, B, C, D were introduced in order to satisfy the initial conditions 
8 1 = (j (0),8

1 
= del/d'!' = &1 (0), "if= '1/'(0) and 1jJ = d'ljlld't' -'1jJ(0) for 

'(= O. 1be kinematic condition, Eq. ,(29), gives the roll angle e 2 in terms of 8
1 

and'ljJ. 

At a speed of v = 90 km/hr, for example, the equation for· the roll angle of the 
frame of the Vespa scooter is 

or 

.Q - A C e-O,46Tf·O,4 iT+ B C e-O,461'-O,4iT +} IF.) - "1' .J.) 

- - _. (44) 
+ C C~U e-!8,IT + D C

24 
eO,0047T 

tJ2 =e-O,46"'[(A C21 + BCd cos (O,4T) + I 
+ (A C21 - 8C22 ) i sin(O,4T)] + CC2ae- 1S,h' + f (-H)\ 

+ D C 24 eO,Ofl47T 

'lhe motion is thus composed of three basic components: a damped oscillation, a term which 
goes to zero very rapidly with time, and a slowly increasing term. 

2.2 The Amplitude Ratio 

From Eq. (32) we can fonn the amplitude ratio of the roll angle of the frame to 
the steering deflection (measured on the ground): 

... (4ti) 

If Cl is substituted into Eq. (37) from Eq. (33), it follows that 

When nwnerical values are substituted, equations result in which the parameter f and.1l (f) 
still occur, as for example, for the Vespa scooter: 

For canplex values .111 .. - a: + i~ and.fl2 = -" - i! we~ also get complex amplitude 

ratios of the fonn 

If, for example, we choose AC31 = 1 and BC32 = 0 in Eq. (43) so that ill determines the 
OSCillation, then the motion of the steering deflection, ~rhich takes the form of a damped 
oscillation, is given by 

~) = e( -c; t Iii) ... =- e-U [cos (fJ r) -t- i sin (fJ T)) (49) 



----

Froude 
Number 

Fr 

7.37 
4.9 

3.27 

2.46 

1.64 

0.82 

7.03 

4.7 

2.34 

1.56 

0.786 

S.9 

6.68 
,-----

4.45 
,. 

2.4 

1.e5 

1.12 

8.9 
----

6.68 
-

4.45 

2.6 

l..35 -----,---
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Table 20 Roots ofrteduced Frequency ..fl 

Speed Roots 

km/hr cm/sec Jl1 and .fl. 2 

Vespa Scooter 
-----~ --.-------

90 2.5 x 103 -0.46 + 0.4 i -18.1 
60 1.67 x 103 -0 0 45 .::. 0.4 i -lS.l 

39092 1.109 x 103 -0.41 .::. 0.37 i -18.2 

30 8.33 x 102 -0.35 + 0.31 i -lS.l 

20 5.55 x 102 0.037 + 0.38 i -lS.4 

10 2.78 x 102 0.85 + 0.82 i -19.4 

DHrkopp Machine Type MD 150 -
90 2.5 x 103 -0 0 6 + 0.91 i, I -2.7 

60 1.67 x 103 -0 .. 57 .::. 0 .. 895 i -2.76 

30 8.33 x 102 -0.48 + 0082 i -3.15 

20 5.55 x 102 00038 .::. 00 62 i -305 

10 2.78 x 102 1.24 + 0.76 i -4.0 

BMW Machine, Type R 51/3, Solo 

120 3033 x 103 -0.95 + 0.74 i i -2.11 

x 103 
I 

90 2.5 -0.93 + 0 0 74 i i -2.15 _. 

60 1.667 x 103 -0 0 88 + 0" 7Y;: i -2.26 

32.3 S097 x 102 -0 0 69 + 0,,67 i -2.65 

25 60941 x 102 -0 0 49 + 0 0 53 i -2.9 

15.09 4.19 x 102 0041 + 0 0 74 i -3 0 65 

BMW 11achine, Type R 51/3 with Pas senger 

120 . 3.33 x 103 -0.9 + 0 0 24 i I -2 068 ----.-.~.--~. ------ --"- - ---.----- -.-

90 2.5 x 103 -0.9 + 0027 i -2072 

60 1.667 x 103 -0085 + 0 0 31 i -2 0 82 - -

35.09 90742 x 102 ~0.7 + 0,,23 i -3.08 
--I---- -

25 6 0 941 x 102 -0 .. 2 + 0.24 i -3.38 
1--, -

1.12 15 ! 4.167 x 102 0.45 + 0.65 i -4 .. 57 ---'-------~ -

-----

0.0047 
-

0.0056 

0 

-0.049 

-0.0625 

I -0.125 

i 

I 

0.006 I 
0.012 

0 

-0.49 
----

-1.46 
-

-_. .-

I 0.0041 
i 

0.0068 
--~-

0.013 

0 

-0.136 

-l..15 

--_. 

0.004 
-. 

0.0066 
--------- ---

000012 

0 
--_ .. 

-0.72 

-0.97 
--_._-------
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The ron an(~le of the frame is then given by 

&2 = (- £ + i F)IJI . (50). 

from t:q. (42) \vith 'IJl from Eq. (49). If the oscillation of the steering system is 
represented as a rotating vector in the Gaussian plane, Fig. 7, then this vector must be 
mul tiplied by' (- E + iF); this gives a second vec tor for the correspondil1f..£ oscillation 
of the frame system about the track. 

I \1,: it 
.f 1 \:'" 

Fie. 7 
Representation of the angles fj 2 and lIP and the amplitude ratio - E + i F 
in the Gaussian plane 
Explanations in text 

As can be seen from Fig. 7, the phase of the roD. angle (i.e. the angle (7 2) 
is shifted "lith respect to the steering oscillation (determined by the angle rtf) by an 
angle ~ which is given by 

tgk PI £ . (51) 

The quantity V E2 + F2 gives the ratio of the peak values; this is the amount by which 
the vector representing the rolling oscillation is greater than the steering oscillation 
set equal to 1. The two real roots.fl.3 andJL4 give real amplitude ratios. fig. 8 to II 
show the amplitude ratio &2/+ and the phase shift in the Gaussian plane for the test 
machines, normalized to rtjJ = 1. 

u". 
IPAmlh 

;v 

"1/ 

'~j'lJ to 

~ 

-----~15 

Fig. B. Amplitude ratio 
·t)27~ for the Vespa 

scooter for various speeds 
v. Dashed vectors for 

B 2/rtJI wi th 1f" 1 

Fig. 9. Amplitude Fie;. lD. Amplitude 
ratio f) 21 rIJI for the ratio fJ2I'tJJ for the 
Dtirkopp MD 150 mach- BHW It .51/3 machine, 
ine for various speeds solo, for various 

Fig. 11. Amplitude 
rat~o ()2l'!P for the 
BMW R 5I/3 machine 
witb passenger for 
var~oUs speeds v. 
ffi:anata.on as in v. ~lanation as in s~eedsFY. Explanation 

Fig. 8 a ~n ·~G. 8 
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2.3 The Motion 

By means of the above results the motion of single-track vehicles in the neighbor­
hood o;~ thc equilibrium condition ~n.thQlt interference by the driver will be considered. Three 
charac-.:,cristic types of motion occur: the complex values Jl. l and ft2 represent an oscilla­
tion, the negative real root.f23 requires a very rapid decrease in deflection and the small 
posi ti ve root..f14 give~3 rise to a slow increase of the deflection (or for low speeds, when 
~4 is also negative, a decrease in the initial deflection)e 

It is useful to distinguish three speed ranges" In the first range the motion is 
unstable. For very low speeds (1 to 5 km/hr) there are two positive real roots instead of 
the complex ones. 1eft to themselves 9 therefore, both systems collapse because of gravity. 
Numerical values were not determined in this regime" For somewhat higher speeds the two 
complex roots have positive real parts; an increasing oscillation is thus set up. At first 
the real part of the roots is so large that no periodic motion can exist. As the speed 
increases, the real part gets smaller and smaller, and more and more of an oscillation 
arises.. For a speed which is between IS to 30 km/hr for the conunon single-track vehicles 
of today, the dam pinr; factor which ha s been positive and ",-hich was the source of in stabi Ii ty 
at the lowest speeds passes through zero and begins to take on negative values. This is 
the boundary to the next speed range o 

In the lovJest speed range the two real roots are negative" In the higher speed 
range the r;egative value for.fl.3 remains practically constante Afte::- some disturbance the 
recovery wlth an absolute value of the frequency A = f2.3 v/L according to Eq. (36) there­
fore takes place more rapidly as the speed increases. The small negative root.124 moves 
closer and closer to zero with increasing speed, and, for common vehicles, reaches it at 
speeds of 32 to 42 km/hr. In the second velocity range, therefore, the motion is stable 
in me neighborhood of equilibriume 

The middle speed range ends when the small root J14 passes through zero, since 
from now on this root takes on small positive values. They indicate a slow tipping of the 
motorcycle.. As a matter of fact, at still higher speeds these positive values again get 
somewhat smaller; but they never return to zero" The damping factor (real part of SLl 
and .11. 2 ) and the dimensionless frequency (imaginary part of.121 and Sl2) are approximately 
constant in the upper speed range of about So km/hr (Fr1'=' 4)" The corresponding absolute 
magnitudes thus again increase linearly with speed (cf .. Eq. (36))0 T;/hence it follows 
that the wave length 1 in the track 

1 = (2-rc: Iv' )v 
" 0 (52) 

1tJhere 7J is the absolute frequency (imaginary part of A = flv/1) remains constant for 
speed~3 of more than SO km/hr. 

If the tires of the motorcycle were painted with s tamp pad ink, the machine~ 
would always leave the same pattern of oscillations on the road in the upper speed range, 
~ega~(iless of. whether.\' . as an example, v =:: 60 km/hr or 260 km/hr.. Even though the instabil-
1 ty lf3 s~l~ In the ttllrd speed rante, it is nevertheless some"lhat surprising at first 
becau~3e 1 t lS our experience that it is particularly easy to ride no-handed at higher 
speeds" Howev~r, 0r:ce h~ is made aware. of the fact, every driver perceives very clearly 
ho .. ! h(~ must Shlft his welght from one slde to the other W'len driving no-handed with 
~:::> 40 km/~r beca~se the machine slowly tilts.. Corresponding to th~ very slow increase 
:m deflectlon, thlS compensation takes place in about 4 t::> 10 seconds o 

The small posi ti ve root 124,\1 the expression of the ins tabili ty, arises from the 
fact that the factor ( COl f - cO2 ) f in Eqo (40) takes 0:1. negative values as the speed 
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v increases (hence as f decreases) because of the negativB sign of £02 0 In the equation 
of l"1.otion, Eqo (31), the term S 02 f corresponds to terms wi th the factor v 2 'lJI. But these 
terms first arose from the introduction of the relation 1\ -Cj2= )Vand the non-holonomic 
Eq. (4). Clearly this means that, during the motion, after a steering deflection the rear 
vlheel again approaches the track of the front wheel, since, it is hinged at an axis in the 
plane of the front wheel, and so angle Ilf continually decreases. If, after a steering 
deflection, the front wheel moves along a straight line, then the rear wheel moves along 
a tractrix asympototic:llly toward the track of the front "wheel o The greater the speed, 
the more rapidly this anproach and hence the decrease of Il./J takes place. If we let v = oa , 

then from Eq: (4) w~ th cp 1 - cp 2 = !If we have the angle !if =: 0 inasmuch as the angular 

veloci ties cP 1 and cp 2 remain finite. With rtf = 0, however, there would be no possibility 
of a steering deflection on which the stabilization naturally depends. 

It should still be mentioned that for smaller 0-, i.e. steeper rake angle, this 
instability may be reduced and even entirely eliminated (in this case the last tem of 
Eq. (40) becomes ( e.Ol f + E 02) f). However, this measure also decreases the damping 
factor of the complex roots which, because of the danger of steering shimmy, is much more 
important than the small, completely harmless instability in the upper velocity range. 

With the aid of the amplitude ratio we can recognize the part of the roll angle 
and the steering deflection due to the three characteristic motions. The part of the rolling 
motion due to the recovery determined by..fl3 becomes vanishingly small at high speeds; it 
gets larger with decreasing v. This rapid motion is carried out almost exclusively by the 
lighter front wheel system as a result of a control defleetion. Conversely the behavior 
of the motorcycle during the slow rolling motion is due to the small value of fl.4• Here 
the rolling motion of the frame system gives rise to the displacement; the steermg deflec­
tion takes part in the motion practically only at the lower speeds. Finally the phase 
shift (of the oscillato~ motion) determined by the complex amplitude ratio must be con­
sidered. In the lowest speed range the roll attitude leads the steering deflection. In 
the middle speed range, however, the roll attitude begins (between 20 to 30 km/hr) to lag 
behind the steering deflection, and with increasing velocity it lags more and more. The 
amplitude ratio reaches a maximum value at 25 to 30 km/hr" With increasing speed it, 
becomes somewhat smaller; and with decreasing speed it beeomes considerably smaller. At 
its maximum value, the amplitude of the roll attitude is ~~ to 3 times that of the steering 
deflection. 

2.4 Comparison of Test Machines 

To compare the results for the individual test machines, the roots J1 1 to D. 4 
have been graphed as functions of the Fronde Number Fr, Fig" 12 to 15" It should be noted 
that all the curves are nearly constant in the upper speed range. The most important 
quantities are the frequency and the damping factor since oscillation phenomena are the 
major source of danger at high speeds. For the Vespa scooter the damping factor (cf. Fig. 
12) has the smallest absolute value; then come the OOrkopp MD 150 machine and, with a con­
siderably larger absolute value of dampinG, the BMW R 51/3 machine with driver alone. 
The passenger, in the case of the heavier machine, causes only a slight decrease in the 
absolute value of the damping factor. Without a doubt, a maximum possible absolute value 
of the damping factor is desirable and should be the objeet of the layout of the mechanism. 
Howevpr, this alone does not suffice to insure good riding characteristics because it is 
precisely in machines with maximum damping that tendencies toward shimmy have been 
observed and measured. 

The natural frequency of the oscillations (cfc> Fig. 13) is highest for the Dtlrkopp 
machine. Gyroscopic forces "lhich are large relative to the vehicle mass are the reason 
for this. The frequency of the BMW R 51/3 machine with d:river only has final values about 
27% smaller, while the frequency of the Vespa scooter is only half that of the OOrkopp 
machine. With a passenger the frequency of the BHW machine decreases by more than half 
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~ that of the solo-machine. For lighter machines a still greater decrease in frequency 

can be expected when a passenger is added. In any case, the difference is not so great 
in practice because the passenger, due to his peculiar 1nabi11 ty to remain fixed, is 
not "rigidly attached to the machine" during all its motions; actually the mass of the 
machine is increased by only part of his mass. Measurements.have shown that the frequency 
actually decreases by only about 10% with a passenger. 
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Fig. 12. Damping factor (real 
pa rt of the roots .ill and ..tl
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of the oscillation vs. Froude 
Number 
a Vespa scooter, b Darkopp 
~1D 150 machine, c BMH R 51/3 
machine, solo, d BMW R 51/3 
machine with passenger 
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Fig. 13. Dimensionless frequency 
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of the oscillation as a function of 
Froude Number 
Explanations as in Fig. 12 
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The value of the negative roots...a , which determine the restoration after a dis­
turbanee deflection, differ only slightly fdr the motorcycles (cf. Fig. 14). The absolute 
value :for the Vespa scooter, however, is 7 to 8 times the values for the motorcycles (because 
of the small mass of the hinged part). 

The root.fl. 4 is of most interest in the upper speed range. With increasing speed 
the values for the motorcycles approach one another and are about equal beyond Fr = 8 
(corresponding to v~60 km/hr)o Beyon:l about Fr -= 2 the curve forJl I• of the scooter 
falls some~-Jhat below the other curves, but as the speed increases it approaches the values 
for the motorcycles. 

For operating conditions the rootsJL3 and ilL. have no great significance and hence 
are unimportant in the desitrt of vehicles o The small lnstabiIi ty due to J1. 4 is readily 
corrected by the driver, for the slow increase in deflection, with no additional effort. 
The restoring action of the hinged part corresponding to ... 0.'3 is a desirable motion. On the 
other hand particular attention must be paid to the oscillation frequency; it must not be 
in the vicinity of the natural frequency of any system of the machine which is subject to 
oscillation, and must also not be in the range of frequencies associated with oscillations 
due to road roughness because otherwise oscillations arising from strong damping can occur. 

2.5 The Action of the Steering Damper 

The tendency to shimmy is generally suppressed by a friction danper which can be 
a')p1ied when needed by the driver at higher speeds and has the usual effect of friction 
damping on an oscillating systemo The damper decreases the amplitude linearly wi thout 
changing the freqIencyo Of course, at lower speeds the damping constant takes on a posi­
tive sign. In this range the damper causes a strong increase in the oscillations. At 
higher speeds, hov,ever j the constant is negative, i.e. we get the dampine action described 
above. 

The improved safety when the steering damper is used depends, however, less on its 
property of causing oscillations (which have begun) to die out than on its ability to prevent 
their oc currenceo Experience shows that handlebar ::himmy, which fi rst starts with a definite 
magni tude of deflections, increases so rapidly that the driver can no longer limit it. The 
hinge then strike s left and right against the stops vii th great force. The energy transfer 
is so large that even a fully applied damper might not be able to cause the oscillation to 
die out fast enougho The threshold to this increase in the oscillations, due to the high 
rate of energy input, appears to occur when the force transfer, determined by coulomb fric­
tion between the front 1.;heel and the road is exceeded (this is hardly to be explained mathe­
matically)o In general the steering damper makes it possible to suppress the oscillations 
exci ted by the driver or the road as soon as they a rise and thus to prevent the danger of 
steering shimmyo 

It still remains to be established, however, that such a steering damper is a 
really necessary aid inasmuch as it must always be used by the driver when the speed changes 
as, for example, in passing through populated areas, and its action is also not always 
sufficient to prevent oscillationso A vehicle ought to be made in such a way that it can 
do without steering dampers. Un:ler some circumstances the installation of a fluid damper 
ought to be considered 1-Ihich opposes the rapid shimmy oscillations with high resistance to 
motior~ but permits the slo\'1T stabilizing motions of the driver at low speedso Such hydraulic 
da111pinr; which is proportional to the speed could alter the natural freql ency of the system 
even -v;i. th no other OOvices o 

The
4
theoretical results presented here have been checked and confirmed with 

measurements ) 0 

4) E. D6hring: The Stability of Single-Track Vehicleso Au to mob 0 Techo Zo Volo 56 (1954) 
D. 68-72 
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3. Summary 

The known linearized equations of motion for the bicycle have been extended by 
more precise consideration of the front wheel system.. Using them we can investigate the 
motion of single-track vehicles mathematically. From this,three characteristic types of 
motion were found. One is damped at higher speeds but has unstable oscillations at lower 
speeds; a second has a very rapid remrn to zero for a deflected system; and the third 
is characterized by a ver~r slow increase at higher speeds and a slow decrease of a deflec­
tion at lcwer speeds o Three speed ranges may be distinguished.. In the lowest range, which 
extends from about 0 to 20 km/hr for common modern vehicles, instability prevails because 
of the growth of the oscillationo In the middle range, from about 20 to 40 km/hr, the single­
track vehicle is theoretically inherently stableo In the upper speed range, at more than 
about 1-1-0 km/hr, a small ins tab iIi ty 0 ccurs in the form of a ve:r;r slow increase of any 
deflection once it starts (amplitude doubles in 5 to 10 seconds). The phases of the steering 
oscillation and that of the roll motion are shifted wi th respect to one another. 

~leasurements confirm that calculation of the motion with the aid of the linearized 
equations of motion suffices to determine the frequency and damping factor of the oscilla­
tion. The influence of the basic parameters on these two factors, which are critical in 
determining the behavior, can thus be investigated theoretically.. This makes it possilile 
to find means for improving the mechanisms of single-track vehicles. 


