ON THE DYNAMICAL PRINCIPLES OF THE MOVEMENT OF VELOCIPEDES

By W. J. MIDDLETON, B.A.

(Congratulated from page 185)

In calculating the whole of the force which a given journey would require to be observed. — Calculate by Equation 18 the vertical acceleration equivalent to the distance over which the actual descent of the rider would be divided into equal parts, the height of each part being the height of the vertical descent of the rider, and the distance of each part being the distance over which the rider would descend in the same time. The result will be the height of the vertical descent of the rider, and the distance of each part being the distance over which the rider would descend in the same time.

The same method of calculation would be applicable to all cases if the velocipede could safely be allowed to become fully accelerated, and the descent of the rider would be divided into equal parts, the height of each part being the height of the vertical descent of the rider, and the distance of each part being the distance over which the rider would descend in the same time. The result will be the height of the vertical descent of the rider, and the distance of each part being the distance over which the rider would descend in the same time.

The same method of calculation would be applicable to all cases if the velocipede could safely be allowed to become fully accelerated, and the descent of the rider would be divided into equal parts, the height of each part being the height of the vertical descent of the rider, and the distance of each part being the distance over which the rider would descend in the same time. The result will be the height of the vertical descent of the rider, and the distance of each part being the distance over which the rider would descend in the same time.

The same method of calculation would be applicable to all cases if the velocipede could safely be allowed to become fully accelerated, and the descent of the rider would be divided into equal parts, the height of each part being the height of the vertical descent of the rider, and the distance of each part being the distance over which the rider would descend in the same time. The result will be the height of the vertical descent of the rider, and the distance of each part being the distance over which the rider would descend in the same time.