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It is well known that the bicycle i1s the basic kinematlc element of single-track vehi-
cles (airplane with a bicycle undercarriage, motorcycle, and so on). It consists of a
frame and two coupled wheels, one of which can be steered. Classical results on the kine-
matics and dynamics of the bicycle were developed and generalized in [1]. Among more
recent papers, we note [2-5]. All these papers are concerned with the uniform motion of
the linear model.

In this paper, we assume the realization of the classlcal nonholonomic constraints
imposed on the rolling of a disc, and discuss a bicycle of general design in the case of
small inclination to the vertical and small steering angles. We consider the accelerated
motion of the bicycle on a trajectory of variable but sufficiently small curvature. We
examine speclal cases of programmed and controlled motion, including the programmed rolling
of a bicycle into a circular trajectory and investigate the reaction of the bieyele to
steering for different combinations of the parameters of the motion. We estimate the
slowing down of the bilcycle on a curvlilinear trajectory of increasing curvature and dis-
cuss variables that are practically independent of this effect.

1. Following [1], we describe the configuration of the bilcycle (Fig. la) in terms
of the. coordinates « y 68,% % %, .. The equations for the nonholonomic constraints are
(A=K My=K:Ma=K,'M,;’ 15 the wheel radius)

z° ¢os B+y" sin 0~ RO,"=0, —z"sin 04y cos 0=0 (1.1)

z' cos 0/+y" sin 0'—RY,"'=0, ~—=z"sin 9’+i4" cos 8'=0 (1.2)

~N

Fig. 1

If we introduce the quasi-velocities v=z'cos0+y'sin8, U=-z'sinB+y cosd, we can rewrite (1.1)
in the form v=R¥,, U=0.
Let =z, y1, 22 be the coordinates of the center Ml of the back wheel in the stationary

frame ovzyz. We then have z=z+Rsin@siny, yy=y—RcosOsiny, z;=Heosy. If we rotate the x and y axes
through the angle 6 about the z axis, we obtain the coordinate frame &/n't’. Rotation of
the latter through the angle yx about the gi axis gives the orientation of the system

K& /n/'t'. Let MO be the point of intersection between the steering axis and the perpen-
dicular dropped onto this axis from the center M2 of the front wheel (Fig. 1lb). Let v be

the angle between the line wmu, and the horizontal. The direction of the line drawn from
© 1978 by Allerton Press, Inc.
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Ml to'MO will be taken to be the positive direction of the axls My Mn“IMmg MEG is the

plane of the frame. We now introduce the further frame Mi.umutn S0 that MMy, (Bw; &)=u/2-0, .
(.7 tw)=0. Rotation of the axes Mmu, Mitw about the M. axis through the angle Yy gives the iE
frame Migmd.. In Pig. 1lb, My, &/ represents the positions of the points wm., k. for ¢=0. We
now take
}‘“u—q’r MiMy=a, MuMgﬁb,- MMII"'CI; K:'Kvﬂ‘:, KKy wse
Ro=R-asing+bcosysind,  com=a cos p-+bcos P cos )

so that
Zy=ez+ (Ro sin % —b sin ¢ cos xg sin O4-co cos 0
Ya=y— (Ro sin x—b sin P cos %) cos 9+co sin 2a==Ro cos %+ sin P sin
where ?,?,a are the coordinates of M2 in ozys. The followlng geometric relatlonships are
valid [1]:

asing=bsink, c=acosqQ+bcosd, ci=Rsini~b

Next, we have

#'==z~R sin 0 sin 4+ (Ro sin %~ b sin ¥ cos %) sin 0-+co cos 6
y'=y+R cos 8 sin '~ (Rq sin y—b sin ¢ cos §) sin B+ecp sin 6

R cosy'==Ry cos % +b sin ¥ sin ;&
sin 0/ cos x Ecos P cos %+sin 1 sin y, sin }.; sin O+sin ¥ cos A cos O
cos 0’ cos x cos P cos ) +sin W, sin ¥ sin A cos 0—sincosAsin®
sin i’ ==sin ¥ cos \p—sm |p ¢0s y, sin A y=my—PsinA+...
[ €08 At .01

Equations (1.2) now assume the form

%" cos B+y° sin B-RO,"+ (e te cos A) B p+ .., =0 (1.3)
(=" cos 0+y°sin 8) ¥ cos A+ep'—cO'+ .., 0 '

For the quasi-velocltles oi...,0. we take the left-~ hand sides of (1.1) and (1.3);
O5=0, Da=1P", Qr=Y", The inverted relationships are
2w —p 500 +05 €05 8, § w2008 0+wy8in 0, 0= (—wi+0sW co8 Atewe)o=t .,
B'=(~0r+0s) R, B'=R~ {~0y—0,P(cos 7&+c|/c) +03[1+(/2c082 A1 cos A—

- =0y /2R sin A} 2R by ]+ wel (erde—! +cy cos A+ R sin A cos A)p—
~%Rcos M~ pRcos A} + ...

Here and above the repeated dots represent terms that do not participate in the for-
mation of the linearized (in ¢, ¥ and their time derilvatives) equations of motion. We shall
now use the Boltzmann-Hamel method to set up by the dynamic equations [6,7]. If we reject

the nonlinear terms, we obtain
4 or d or ar
— e Py e e
dt av EX )

¢y o gin A .cosx aT or
+l)[-,-—--—~—+c,( 7 —-—-—-n) e —— 08 A | =Py
{

It can be shown that

Mv'=Py, agy " —agy—a2 " —a0P"+ (84— 850 +-ag0") el (1.4)
bW+ (byv+8) bk (bavP- byt bi0") p—agy Hbsvy t (a+ v+ byvt) =0 *

where Ms=mp+my+my+mi+ (L+L)R72 and P5 1s the linearlzed generalized force referred to the quasi-
cecordinate ﬂ5 and including the torque applied to the front wheel by the motor, the fric-
tional forces on the wheel axes, ailr resistance, and rolling friction, and

Go=Js, @m=gyy, ay=lyteifelys, as=wcos Atogps, aymgp,
ay==phy CO8 A, as==—vCOS A, Bo=Jdcide~y+2cic-Y,
b= (ey0m o) et 008 A+eBedvgt eoe= st ma(btey) cOS A, By (Wakere™ ) et cos A
by=gpigink, by=(ejc~Nt\)e~1 cos A+
oy [ (ma+R™2) cos A 4o~ LR-2]—cqe~ps—myd cos )
bs=vs, bgmmcipa, bp=IR=%c;, y=mR+ILR-t4] 0t
V= (my+ ma) Rt msh 4 mihs, va==IR~!{c)6™ +cos A) +oc=t],R-t

H
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[l +InR :lsﬂl]"shﬁmdz. P«=mz+m(+IzR"‘,I 15"!'"'”{”"4 [
pe=[ (I -+ “rvleT), pe=patmacy, pa=ps+ll~t sin A, ps=pg+ LAY sin
’ e J=A, 8in? A+Bj c08* A+Dj sin 2A+T,'+md*+m, b+:.)’ o
Jy=A 4+ Ay + 1)L+ (mytmp) R3S mah 2t mh,?, To=By+By+1 + 1) + myl 2 4-m 12
Ja= (A +1y’) sin A+Ds cos A+maR(bte,) +mibyd, Ti= (Batla’) cos A+Dy sin A+malyd
=D +Dyrmyh i +mihils, ha=R—a sin p+d; cos A+d sin A, lz=a cos p—d; sin A-+d cos A

In these expressions my, I;, I] is the mass and axial and diametral moments of iner-
tia of the back wheel, My, 12, Ié are the same quantities for the front wheel, ms, M3 are
the mass and the center of mass of the frame, Al’ Bl’ Dl are the moments of Inertia and
the centrifugal moment of inertia of the frame about the axes M/, M, my MM is the mass
and the center of mass of the steering mechanism, A2, Bg, D2 are the moments of inertia
and the centrifugal moment of inertia of the steering handles relative to the Ma, M axes,
(Br? z2)=n/2~A, (2" t)=A, and & is the coefficlent of viscous friction in the steering system.

Let kl, Rl’ S be the curvature, radius of curvature, and arc length of the trajec-
tory of the point Kl and k, R, s: the analogous quantitles for the point K2 on the trajectory,
i.e., k=d0/dsy=R~"\ k;=db'/ds;=R,~', We then have 0'=kw, 8"=kx'. We also have

vemRD*, v'=RB,', dr=ds;cosB, dy=ds;sin@, dz'=ds;cos6’
dy'=ds; sin 0, ds,=vdt, dsy=v'dt

In the linear approximation,

0'=cict e tvy cos A, dee=de'=ds,=ds,, v=1', ky=c~!pcosite,cmiviy’
kamskyto—t’cos d, a'saz+e, p =yteB-czip, O/=0+Ppoosh, dy=6ds;, dy'=0ds
Remark. Let I,k be the coordinates of the center of mass P of the bicycle in the

frame Kz, IT A=0, »=0, D,=0, d=0 and the entire mass of the bleycle 1s localized at P (this
is the simplest model), then the first equation in (1.4) yields

chax"acg_;_(+vlot'+ (v3+v'lo) P

which corresponds to the elementary theory and generalizes the well-known equation [1,8)]
to the case where w=v(.

2. Consider the motion of the bicycle without acceleration (v = const) with constant
tilt (y=comst) and fixed steering angle (p=const), In thls case

0=8¢t+vc—!2 cos b, %= (G—asv®)ay '

The point Kl moves on the circle a24p*=cp—2cos-*A. The values of the radius R=cp~tcos~tA(m)
of the circle for different angles y(rad) and ¢ = 1.4 m, A = 0.4363 rad are given below:

01

g 001 002 003 004 005 008 0.08
1 258 193 44

3 020 023 028
185 772 515 388 309 772 672 5.94

(=2

Figure 2 shows the family of straight lines yi=y:($), 1i=—-% Wwith v as a parameter. The
values of this parameter, ranging from 2 to 100 m/sec, are indicated against the straight
lines. The scale on the horizontal axis is
different in the four quadrants: points 0,2,
4,... correspond to the first quadrant, the
points 0,0.01,0.02 correspond to the fourth
gquadrant, and the second and third quadrants
are characterized by the points 0,0.2,0.4,...
and 0,0.02,0.04,... The range of validity
of the linear theory imposes a restriction on
the angle y: as v increases, the angle ¢ be-

$r qe e o Al comes smaller.
a1 a08005095 M)
i We used the following numerical data:
P my=my=147 k3, mMa=1215 ks, Mi=081 kg, £=981 msec?, R=03 m
b=00724m, ¢,=0.05438 m, Li=0.63m, hi=0.57m, &=045m, d=003m
1 =0.023 raq
wos s 'g," w8 1=l =083 kam?, I1=I,=066Tkom?, B,=6.86Tkgm?, Ai=i1.77wgm? D;=0.96 kgm®
Fig. 2 Dy=0.98-40"% kgm?, Br=00078 kgm?, A3=0.0098 kgm>
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For the simplest model of the bicycle,

b Gk 117 A PR AT TRY.T ol Al - Pl T SEY PP (Ti+Ig) R ]vy g~ Ry 102 .

In the elementary theory, the lnertia of the wheels 1s neglected. Moreover,
vi+(h+L)R-'~v, to within about 5%. We then have wwv%~'R'. The last formula is given in [9].

3. In the cagse of a uniformly fetarded'w=w—wgw=mnn>m controlled motion of the bi-
cycle, and uniformly varying steering angle (P=ft p==const), we have

P Bl Ples+ (vob—wt*) cos A]
] % [cl-t»(_.z_t 2 t)cosl] t, & _____c_(;)_:;t_)_____

@ 1] 2 I P 1 24 ! ’ I #
el ol L Y= == Vgc — Ug* CO8 A=y } —— ~
1=vet = p [ g Ve ( 50 ' ) 3

5 wit A+ : I A
- —_—
oltt cos " cos ]

The t1lt angle x 1s given by the second equation in (1.4):

%" =rix =as1Bvo+ [ (Be1—asi) W asyvo?—aiy pt— 205 prow 4 oy pro2e’

ri=ayfay, ay=ay/ds, ay=6i/as, as =asfa,

The particular solution of the last equation corresponding to the above forced motion
is

8= Pr3{vo (das, 2w —agy) + [y~ a5 et + (699~ ase) w8057~ w3 ] 1+2a5vow—ay, w2e%) (3.1)

Figure 3a shows X=Xt ;1=-% for p=04 rad/

%QM‘ F24 /;;;//;V sec, vy = 15 m/sec. This is a nearly rela-
amwjgf P) W/ tionship, except that for large values of w
\ a, /zééunﬁmuf the graph of () is found to curve slightly
\ f to the right. The slowlng down has practil-
7200 v\ "W cally no effect on the other characteristics
\\\ /49 of the bileycle. We now note the following
&W| \\\ 7 205 e point. At thg beginning of the motion, 6<y.
\J NS [ For we<4 m/sec” and small values of £ corre-
400 \ \\:::~ T sponding to the linear model, the angle 8
#;\ 1 ‘x‘%==== remains smaller than Y. When w = 5 m/sec2,
I/ and beginning with t = 0.21 sec, the bileycle

! 6
a & 05 O b is found to turn around (®=>¢): for t = 0.21

Fig. 3 sec, 0=122, $=1.20°, yu=125°3 for t = 0.22 sec,
’ 0=1.83°, v=1.26°, x;=184°, To establish the relation-
ship between 6 and Y for large values of the
time t, we must consider the nonlinear model because the values of the angle X1 leave the

range of validity of the linear theory.

Let w = 0. We then have y=-pa~‘awt(esw?~a)t], i.e., the bicycle tilts over uniformly.
Calculations show that when at least one of the two quantities B, v increases, the time
during which the linear theory remains valid becomes shorter. The radii of curvature

Ry=p!(eic~to~t+c-t cos M) =1, Rymsp~'[ (cic='+008 A}v—!-he~tt cog A] 4

at the points Kl and K2 decrease with increasing angular velocity ¢'=p of the front wheel

(thils is accompanied by a reduction in the interval of time during which the variables
remain small). The broken curve in Fig. 3b shows the graph of Rl(t) and the solid curve

the graph of Rz(t). Curves 1-3 correspond to p=04 rad/sec and curves U4-6 correspond to

p=001 rad/sec. For curve 1 the veloclty is v = 5 m/sec, curves 2 and U4 correspond to v =
= 15 m/sec, and curve 5 to v = 45 m/sec. Curves 3 and 6 were constructed for 5 m/sec <

v < 15 m/sec and 15 m/sec < v 5 45 m/sec, respectively.

As the velocity v and time t increase, the range of validity of the linear theory is
reduced, 1.e., there is a simultanéous reduction in both components of the denominators of
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Rl and R2. However, ac'<cosd (for the above numerical data, ce '=0089, cosA=0906). This means
that R2 1s more sensitive to changes in z than Rl. Examination of the numerical values
will show that Rl is practically independent of v whereas Rl can be approximately repre-
sented by Rwcp~t-tcos~tA . The results obtained from thls approximate expression are slightly
too high. The effect of v on R2 cannot, however, be neglected.

At the beginning of the turning process, when t is small, we have R»R for small val-
ues of v. As the process continues, i.e., as t increases, the values of Rl and R2 become
equal and the graphs of Re=R(), R=R.(t) approach one another but R>R throughout the process

When w = 1, we obtain a linear dependence of the angle Y on time in (3.1):

X1=—y=PBas~* [agv+ (asvi~a,)¢]

/(n P [ 7 T
8’ "fﬁ (l)/ / {v) I‘: /177’/”‘-,2.9‘,,:*1,"1,?5,%6”
7«7’ 5/ 5 '/ ol ] /2 Hosumhec?
y a
47 aVVaR
LI , , /| A
s =i miee // ” : /
a4 08 wpsec L2 5 /
/ //' / /
% /
L. i ¥ /
wT AP ) 4%
-
-~
-~ // 1]
¢ az o4 06 a8 7 tsac aJ . awn 032 048 tsec
Fig. 4 Fig. 5

The solid curves in Fig. 4 correspond to B = 0.0l rad/sec and the broken curves to
B = 0.1 rad/sec. The solid straight lines cover the entire quadrant of Flg. 4a, i.e.,
the velocity v of the bicycle has a considerable effect on the tilt X7+ An increase in

B for v = const is also found to have a sharp effect on the angle X7 - A simultaneous in-
crease in v and B leads to a considerable increase in X1

The angle 8 1s glven by 0=pc!(cit+Yawttcosd) .

Curve 1 in Fig. U4b is a graph of e=8() for v = 5 m/sec; curve 2 corresponds to v = 15
m/sec. At the beginning of the turning process, 0<%, but eventually 6 becomes greater
than $. A certain definite amount of time is necessary before the bicycle can turn, and
thereafter the turning process becomes faster than the change in ¢. This is so because,
for small t, the angular veloclty 0°= fe-i(ci+vtcosd) 1s smaller than the angular veloclty B of
the steering system f(e/ex1). As time increases, the angular veloclty 6° with which the bi-
cycle turns rapidly exceeds the angular velocity of the steering system. Thus, when v = 5
m/sec, we have 6'/p=0039+8.285¢. When t = 0.2 sec, we have 0/p=088<1. Finally, when t = 0.3 sec,
we obtain 6'/p=10i>1.

The trajectories of the points X, K. are cubic parabolas whose ordinates are much
smaller than the abscissas: y<«sz y'«z/. This is a consequence of the linearization process:
s=vtwz , ¥y being small.

4, Suppose that Kl moves on a given trajectory (program) and let us refer to the

corresponding motion of the blcycle as the programmed motion. It is required to determine
the dynamic characteristics of the bilcycle.

Let us suppose that the programmed curve is the clothoid Risi=y, y=const and that we have
uniform slowing down, i.e., v=w-wt, We then have

Ri=y{vot—thwe*y=,  Q='/py~* (vot—fowt?)?
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ﬂa I(riﬂ',zs,,m

Fig. 6

To ensure that the point Kl moves on the clothoild from the state #%=0, we must take

P=acey~f cos—* k(eip [—e1=4 (vot~—fawe?) cos A —1} +cy~* (vot—fawi?) cos™t A

The angle ¥ is the solution of the differentlal equation

(" =) pe~t 008 h=—azw+as(vo—wi)* + [Rgw= o4y + asi (Vo wt)3]) (~¢1/ cO8 A+ b1
+vpl=lfawtd) + exp [—e, ! (vot—'[,wt') cos A] {azifw+eca—! (vo~wit)? cos A] — (4.1)
—ag (vo—wi) +oy[dacw —ac +asi (vo—wi)t) c08~' A),  az=~aa/oe,  as==as/o

Let
Ag=12asr—*w+ (au+2auc| cos—! k—-zau) rAwd Sas r—tvedw +
"+ (B3y—8ur—P+aaicy €08~} X)rdw+r-3wed (asics €08~ A—ayn) —ayeir-3dcos—t A
Az 12a5r 0o w4 r=3pew (2031~ 205161 €08~F A—2a1) —asir-2ved+aur-ive
AymBagr—bw? +r-2wd (Vaae  +apici 081 A= aar) +3 /2080~ 2votw " foauyr=w
Agm= =20y tgw?,  Ag=laasriw?

The particular solution of {(4.1) satisfying the initial conditions

yo=ey~idg cos=t A,  yo =ey~idrcos~t A,

is

. ¢
¢ oxp (rt)
= Apt? + m———s } [a+b(vy—wi)2]X
’l ¥ cos A {EI " ar ;f[ (o—wi)*]

]
A ~rl) »
Xexp [( —-r—ﬂcosk )t+ v cos 13] at — exp(=rt) [a+b(ve—wr)2]X

¢y 2¢ 2r
0
Vg weosh
X exp F———cosA) I+ 1 ]dt
¢y 2ey
a=ax W +¢y (agyw=041) COS1 A, b=az(c1~! COS h+asics cOS™! A —ay,

The curves of Fig. 5 were constructed for y=600 mg, vy = 15 m/sec; the graphs of Rt

si(t), B(t), ¥ correspond to w = 4 m/secg. The acceleration w has a considerable effect on the
tilt angle x; the angles 6, %, and also the quantities R, s, are not very dependent on w
and are affected by it only to the extent that, as w increases, the range of valldilty of
the linear theory [0, t] 1s found to increase.
a+bvg?
When w = 0, g=cy~'cos~ A { Ag+ At + ——————e—— X p (—Vo0y ™ COB M) +
(vocy~? cos AY2—r®

a+bug® exp(rt) N exp (~rt)

T [ rdveci=t o8 A rewvoes~tcos A ]}
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This case 1s illustrated in PFig. 6 (a and b). The variable p%rameters are vaY. The
s0lld curves correspond to 4=600 m2 and the broken curves to =335 m<. The dot-dash curves
correspond to y=5 m2. The numbers shown against the curves are the values of Zq in m/sec.

Figure 6a shows graphs of %=w%(t) and 6=6(t), The upper half of Fig; 6b shows graphs of Rl(t)
(rays) and sl(t) (hyperbolic curves). The lower half of Fig. 6b shows graphs of xe=u(f),

As the parameter y increases, the curvature of the clothold decreases. It follows
from Flg. 6 that this 1s accompanied by a reduction 1n the angles % 8, %=-x which represent
the rotation of the front wheel, the rotation of the bicycle, and the tilt angle.

When ¥ 1s kept constant, all three angles increase with increasing initial velocity
Vo of the bilcycle, but the tilt angle increases more rapidly than the other angles.
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