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Abstract. A theoretical  model of a  moving bicycle is 
presented for arbitrary bicycle geometries a t  finite  angles. 
The  non-linear  equations of motion  are  derived  and 
solved  with  the  help  of  a  computer.  The  solutions  are 
tested  for  energy  conservation,  and  examined  with  respect 
to  inherent  stability. For common bicycles, velocity and 
lean angle  ranges  of  self-stable  motion  are  predicted. 

1. Introduction 

The  problem of bicycle stability has been analysed 
many times at  different levels of mathematical skill. 
At  the  turn  of  the  century,  Whipple [l]  and Klein and 
Sommerfeld [2] obtained self-stabilising characteris- 
tics depending on speed:  there is a stable region 
between 4 and  5.5ms".  The following simplifica- 
tions  and  approximations  are  made:  the angles are 
small, the wheels are  equal in diameter,  the  centre of 
gravity of the bicycle and  rider system is located in the 
plane of the  frame.  More recently Jones [3] and Le 
HCnaff  [4] concentrated on geometrical considera- 
tions (neglecting dynamical forces on  the steering 
system) and  pointed  out  the  crucial role  of front  fork 
geometry (especially of the  trail  length)  for  the  ease of 
steering-as bicycle builders  know by experience. 
Self-stability was  not  predicted by their  models. 
Dikarev et a1 [5] investigated the velocity interval  for 
stability  of  rectilinear motion of an  uncontrolled 
bicycle in relation t o  steering  geometry (head  angle 
and  trail  length).  Computer  simulation  was first  used 
by Douglas  Roland [6] to solve  a  system  of  eight  dif- 
ferential equations  and a  huge number of parameters 
in order  to  come close to reality. Papadopoulos [7] 
developed the linearised equations of motion  for 
general bicycle geometry (including dynamical  prop- 
erties of the rider's body)  and  obtained ranges of 
stable  motion  depending  on  the velocity and  par- 
ameters of the bicycle. 

Our research was  aimed at eliminating some  of  the 
limitations  mentioned  above: a  general model  of  the 
moving bicycle was to be found, with as few sim- 

Zusammenfassung. Ein  theoretisches  Modell  der 
Dynamik  des  Fahrrads  fur beliebige Fahrradgeometrien 
und  endliche  Winkel wird entwickelt.  Die  nichtlinearen 
Bewegungsgleichungen  werden  erstellt  und  mit 
Computerhilfe  gelost.  Die  Losungen  werden  im  Hinblick 
auf  Energieerhaltung  und  Eigenstabilitat  untersucht.  Fur 
gebrauchliche  Fahrrader  findet sich ein  Geschwindigkeits- 
und  Kippwinkelbereich  eigenstabiler  Fahrzustande. 

plifications  as  possible, with  any given geometry (also 
valid for  penny-farthings  and  recumbents), allowing 
us  to  determine  stable  and  unstable  riding  situations, 
and  to investigate the ability  of the bicycle to stabilise 
itself under  any given initial conditions-the rider 
being able  to steer with  the  help of  small  displace- 
ments of the  centre of gravity. Nevertheless  a few 
approximations  are  made:  the  parts of the bicycle are 
considered  as rigid, there is no friction  or slip  between 
wheels and  ground,  the wheels themselves are infinitely 
thin,  the  ground is even, and  there is no  wind.  We 
concentrated  on  hands off riding  and  thus  always set 
the  steer  torque  to  zero. 

The bicycle has  the six degrees  of freedom of  a rigid 
body  plus  three  internal  ones (steering  angle and 
angular  positions of the wheels). It is subjected to  two 
holonomic  constraints  (both wheels touch  the  ground 
plane)  which  reduce this  number  to seven, and  to  four 
anholonomic  constraints  (both wheels are rolling) 
which affect only the degrees  of motional  freedom 
reducing them  to  three. Seven degrees  of configura- 
tional  freedom  remain  but five of them  (the  absolute 
position,  the  absolute  direction of the  frame,  and the 
angular  positions of the wheels) have no influence on 
the  motion  and  thus d o  not have t o  be considered.  We 
therefore will describe the  motion of the bicycle by 
two plus  three variables: the steering  angle 4, the lean 
angle K,  the  time derivatives $, I;- and  the  (scalar) 
velocity o (measured  at  the  rear wheel). 

Due  to  the  anholonomic  constraints, 4,  K and  the 
integral of o are  not generalised variables within the 
meaning of Lagrangian  mechanics.  It  may  point  to 
the  importance of the  anholonomy  that obviously the 
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momentum of the bicycle is not  conserved  although it 
moves on a translational  invariant  plane.  Thus, we 
will use Newton's  formulation of mechanics  to 
construct  the  equation of motion. 

2. Analysis of bicycle geometry 

A precondition of  a bicycle model  capable of handling 
even non-standard bicycle geometries within a realis- 
tic range of steering and lean  angles is a  comprehensive 
analysis of bicycle geometry. As Jones [3] commented 
bicycle geometry is a 'remarkably  tricky little prob- 
lem'. Nevertheless, the  complexity  of  this  geometrical 
problem  can be reduced  when  selecting an  appro- 
priate system  of coordinates. 

Figure 1. Definition of frame  parameters  and  angles 
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Figure 1 (bottom)  shows  the bicycle standing  on  the 
ground  plane  illustrating  that  both  planes within 
which the wheels are  located intersect along  the  steer- 
ing  axis. For this reason  the  point  of  interception of 
the  steering axis with  the  ground  plane is selected as 
the  origin of an  appropriate system of coordinates 
suitable  for  any  plane  frame  geometry.  Cutting off the 
wheel planes  along  the lines of  their intersection with 
the  ground they can be unfolded  into a plane  as  shown 
in  figure 1 (top).  We will refer to  this  position  as  the 
'plane reference position' where the  steering axis coin- 
cides with  the vertical  axis of an  orthogonal system  of 
coordinates. 

Five  geometric  parameters  are used to describe the 
bicycle: the  three  lengths L,, Lf, L, which characterise 
the  frame  and  the radii Rr, R, of front  and  rear wheels, 
respectively. These five parameters  plus  the  two vari- 
ables-lean angle K and steering  angle &determine 
the three-dimensional  position of the bicycle standing 
on the  ground.  Our  task is now  to  determine  the 
ground  contact  points of the wheels, the  track of the 
bicycle's motion  and  the  positions of the bicycle com- 
ponents  from these variables. 

Therefore we define three auxiliary variables fir, f i r  

and Z ,  as  can be seen  in the  plane reference position 
(figure 1, top).  In  the  normal  position  of  the bicycle f i r  
and f i r  can be obtained  as follows: we construct auxil- 
iary lines in the  planes of the  front  and  rear wheels 
perpendicular  to  the respective intersections  with  the 
ground  plane. fir  and p, are  the angles between these 
auxiliary lines and  the steering axis. The  distance  from 
the  point on  the steering  axis  which is nearest  to  the 
centre of the  front wheel to  the origin is called Z, .  

Geometrical  relations  for these quantities  are 
obtained by transforming  the bicycle from its plane 
reference position into  the  ordinary three-dimensional 
position.  These  transformations  consist  of  two  alter- 
native sets  of rotations using either  the angles 4, f i r ,  K 

or - 4, fir, $, S, (where $ is the  lean angle  of the  front 
wheel and S, the  projection of the  steering  angle  on  the 
ground  plane).  The  above  rotations  apply  to all 
bicycle components except for  the first rotation  of  the 
respective set (k 4, corresponding  to  the steering 
action) which turns  only  the  front  or  the  rear  com- 
ponents  about  the steering  axis. 

In  order  to  calculate  the  four  unknown angles, we 
make use of the equivalence  of the  two sets of rota- 
tions.  The  identity of the respective matrices in the 
coordinates  of figure 1 leads to  three  independent 
equations: 

tan f i r  = tan fi, cos 4 + tan K sin $/cosfir (1) 

sin $ = cos 4 sin K - sin 4 cos K sin p, (2) 
sin S, = sin 4 cos  fir/cos K .  (3) 

These  equations  indicate  that  the  determination of fir 

plays  a key role  for  the  computation of the  variables 
f i r ,  $, S,. The  fourth  equation  to  complete  the system 
is a  geometrical relation  obtained  from  the  plane 
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reference position: 

Since $ and 5, do  not  appear in equations ( l )  and (4), 
the  problem is reduced to  the  simultaneous  solution of 
these two  equations. An analytical approach  turned 
out  to be discouraging,  thus  the respective values  of 8, 
and /?, are  calculated numerically. 

To  develop  the  equations of motion, a  system  of 
coordinates is used moving  along with the bicycle 
with  its  origin fixed at  the  point of interception of 
steering  axis and  ground  plane.  The  accompanying 
unit vectors point  into  the  direction of the  hub of the 
rear wheel (e*), its  rolling direction (eR) and  from  the 
wheel's ground  contact  point  to its centre  (eA). 

Defining the  distance of the origin to  the respective 
ground  contact  points  of  the wheels as Ti = - Trek 
and T, = - T,e, (see figure 1 (bottom)) where e i  
points  into  the rolling direction of the  front wheel, 
geometrical considerations yield 

Tf = - Lr/cos fir + R, tan Pr ( 5 )  

T, = L,/cos 8, + R, tan p,. ( 6 )  

(Tr is usually  called 'trail',  provided  that q5 = 0.) The 
unit vector  es points  from  the origin to the upward 
direction of the steering  axis. With 2, = Zoe,  the 
magnitude of Z,, is 

Zo = L, tan pc + R,/cos pr - L,. (7 )  

3. Dynamics 

In  our  model,  the bicycle consists of five main  com- 
ponents:  frame,  rear wheel, rider, handlebars/fork 
and  front wheel. (The last two  components we  will 
denote  as  the steering system.)  We  assume  that these 
components  are  absolutely rigid and assign to  each of 
them a momentum pc and (in  principle) an  angular 
momentum  L,  for  the  rotation  about its centre of 
mass.  The  theory of bicycle geometry  discussed above 
enables us to  calculate  the  positions, velocities and 
accelerations of the five components  depending  on  the 
angles 4, K,  their  time  derivatives and the  speed  of the 
bicycle v relative to a  system  of coordinates  that 
moves along with the bicycle. (v always points in the 
direction  eR .) 

The  coordmates of a point fixed to  the bicycle are 

where x. are  the  coordinates of the  point with  respect 
to  the  plane reference position  (they  are  constant 
except for  the rider who is allowed to move  relative to 
the bicycle frame)  and D is the  matrix  representation 
of the  rotation described above. Ic-dependent terms  do 
not  appear because the system  of coordinates is 

turned  together with the bicycle, the  $-dependent  part 
of D is used only for  the  steering system. In  the time 
derivative  of equation (8), we have  to insert additional 
terms  due  to  the  motion of the system  of coordinates: 

i = b x , + D . t , + A x + v - A T ,  (9) 

P = Bx, + DX, + 2 b i ,  + (A - A2)(x - T,) 
+ V + A(2.t - V ) .  (10) 

A is a matrix  constructed  from  the time  derivatives  of 
the  unit vectors: 

0 -RCOSK K 

R C O S K  0 RsinK 'I . (11) 

-K - R s i n ~  0 

Here, R is the  angular velocity of the  motion  about 
the  instantaneous  centre of rotation.  It  can be calcu- 
lated together with the  front wheel speed vf from  the 
constraint of rolling  of the  two wheels: 

= A(T, - T,) - 7ifek + TreR (12) 

leading  to 

R =  (1 3) 

vr = (v + T c )  cos @ - Fr + TIC? sin @. (14) 

Applying  the  formalism of equations @)-(IO) to  the 
centres of mass x, of the bicycle components allows 
the  calculation of the  momenta p c  = mc.tc. Only the 
most  important  angular  momenta  are  taken  into 
account,  those of the  rear  and  front wheel (in hub 
direction)  and of the steering  system: 

LC = - Or(vf/Rr + (R + 6) sin $)e; (15) 

L, = - O,(v/R, + R sin K)eN (16) 

L,  = Os($ + I Z c o s ~ c o s p ,  - Ksin&)e, (17) 

where 0 is the respective moment of inertia  and e; is 
a unit vector pointing in the  direction of the  hub of the 
front wheel. 

With these dynamical  quantities, we are  now  able 
to  construct  the bicycle's equation of motion.  Three 
forces act  on  the bicycle from  outside: the  forces  of the 
ground  on  the  rear  and  front wheels Fr, Ff and  the 
weight G = &G(.  Thus,  for  the whole bicycle, the 
equations of translation  and  rotation  are 

(v + Tr) sin 5, + T,$ 
T, COS 5, - Tf 

- GC) = F r  + F, (18) 
c 

C( ic  + X, X ( p ,  - G,)) = Tf X F, + TI X F, (19) 
c 

where the sum C, ranges  over all five bicycle, com- 
ponents.  For  the  internal degrees of freedom (rotation 
of the wheels and steering), only  scalar  equations of 
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Here, MS is the steer torque  and  the  sum Cfc ranges 
over  the steering system.  (The  sum index rc will repre- 
sent  the  other bicycle components.) 

From  the nine scalar  equations (1 8)-(22),  we elim- 
inate  the  forces F,, Ff by tedious  but  straightforward 
calculation resulting  in the final equation of motion  as 
a three  component  vector  equation.  Using  the  abbre- 
viations wl = (sin @/TrcosPr)e,  with e, perpendic- 
ular  to  the  ground, w2 = - sin K sin +R - cos +eA, 
S = -sin  sin@ and K = Tf - T, ,  we obtain  the 
equation of motion: 

eN L,  e; L, 
+ - K x w 2 - - K x e A = 0 .  

R, R, 

4. Numerical solution 

The  equation  of  motion derived above is.implicit, i.e. 
it is not solved for  the second  derivatives d, il, v of the 
dynamical  variables,  thus it cannot be solved by 
numerical  methods directly. From  the  structure of 
Newton’s law  of motion  and  the rules of differentia- 
tion, we know  that  equation (23) depends  on  the 
second  derivatives linearly. So, if the  variables  and 
their first  derivatives are  known, their calculation 
reduces to  the  determination of the  zero of  a linear 
function which can be solved  exactly. 

Having  made  the  equation of motion explicit this 
way, we implemented it on a computer  and solved  it 
numerically by a Runge-Kutta  procedure  assuming 
an  absolutely passive  rider fixed to  the bicycle. This 
turned  out  to be quite easy in a range  of I K (  < 45’. 
As the  positions,  momenta  and  angular  momenta of 
the bicycle components  are  known,  the  total energy 

can be calculated very easily. In  the  numerical  simu- 
lation, we were able  to  approach  an  accuracy  of 
AE/E < lo-’ per second. 

The system exhibits a very manifold  dynamical 
behaviour  dependent  on  the energy; in  particular a 
region  of stable  stationary  motion exists with a very 
large  basin  of attraction.  Also  from initial conditions 
very far  away,  the system tends  to  the  stationary 

values  of the  coordinates.  We  remark  that this is due 
to  the  anholonomic  constraints; Liouville’s theorem 
prevents  Hamiltonian systems from  this  kind  of 
behaviour.  We will restrain ourselves here  to  the 
discussion  of the linear  stability of stationary  motion. 

We  transform  our system to first order  and  omit  the 
speed v, which can be calculated  from  the  other 
variables by means  of energy conservation.  In a vector 
notation 2 = (#I, K ,  4 ,  a), our  dynamical system is 
given by 

L? = F(a)  (25) 

with the  condition of stationarity 

F(%,) = 0. (26) 

A fixed point ct0 of  this  system corresponds  to  station- 
ary  circular  motion of the bicycle; to allow arbitrary 
radii, we introduce  as  an  additional  parameter a 
constant  lateral  displacement W of the rider’s centre  of 
mass (of the  magnitude of  several  centimeters). For 
given speed v and  displacement W, we found several 
fixed points with  different #I and K ;  the  only possible 
way to  show  the  important  ones in one  plot was to use 
K as  an  independent  variable  and  to  calculate  the 
corresponding W. Figure 2(a, b)  shows $ and W for 
given v and K for a  typical roadster bicycle with a 
wheelbase  of 11 1 cm, a trail of 7cm  and a  rider of 
70 kg. 

Exceeding  a certain speed  limit (here = 7  m S - ’ )  

figure 2(b) shows  only  one fixed point  for given W. 
Below that limit two fixed points  occur  (for positive 
W ) ,  for  reasons of symmetry a third fixed point is 
located  at negative K .  

In  the vicinity  of the fixed points, we linearised F 
(by numerical  differentiation)  and  diagonalised  the 
matrix of the  linear  mapping.  Figure 2(c) shows  the 
largest  eigenvalue E,,, of the linearised dynamical 
system. In  the region  enclosed by the  zero  contour 
(self-stability  region),  all  eigenvalues are negative and 
the system is self-stable in the sense that in  a finite 
region around ao, z approaches c(,, exponentially. 
Where E,,, is positive, the fixed point is unstable in the 
sense that a perturbation in the  direction of the  corres- 
ponding eigenvector grows exp(Emax t ) .  Thus, 
is a measure  for  the  time  within which the rider would 
have to react to a perturbation of the bicycle’s motion. 

Above  the  stable  region,  there is one real  positive 
eigenvalue  with  a corresponding eigenvector with a 
large K component  indicating  an  unstable  motion by 
turning over  with too slow a reaction of the steering 
system. Below the  stable region, the real part of two 
complex  conjugate eigenvalues  becomes  positive, 
indicating a  locally unstable oscillation. Within the 
stability region,  the  amplitudes of #I and K in that 
oscillation are nearly equal while the  phaseshift is 2: 7~ 

(when the bicycle is leaned  to  one side the  front wheel 
is turned  to  the  same side); at lower  speed, the 4 
oscillations become  larger while the phaseshift 
decreases: #I approaches its maximum  later  than K and 
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Figure 3. Self-stability  region  (shaded) as a  function of 
the  moment of inertia of both  wheels.  (Arrows  indicate 
the  values  from  figure 2.) 
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Figure 2. Parameters of stationary  motion as functions 
of lean  angle and velocity: ( a )  Steering  angle 4 (deg); 
(b )  lateral  displacement W (cm);  (c)  largest  eigenvalue 
h X ( S ” ) .  

tends  to a  large but finite  value if the  rear wheel keeps 
its moment of inertia.)  The  dependence  on  the  trail  as 
an  important  parameter in frame  construction  (at 
constant  head angle) is shown in  figure 4. The stability 
region grows  linearly with  the  trail while it  tends 
to large  velocities. Other  quantities we found  to be 
important  for  the self-stability are  the following. 
0 Shifting  the  position of the  rider  forward causes  a 

similar effect to  that  caused by lengthening  the  trail. 
0 A smaller  head angle  (at  constant  trail) raises 

slightly the  upper limit  of the  stability region. 
0 The lower  limit is raised by an increase  in moment 

of inertia of the steering  system while the  upper 
limit remains  constant. 

0 A viscous damping of the  steering system normally 
has  only little effect, but  for a recumbent  (or ‘easy 
racer’ model) which is stable  only at  high speed, 
it  causes  a  decrease of the  lower limit  of about 
10%. 

Figure 4. Self-stability  region  (shaded) as a  function of 
the  trail.  (Arrows as for  figure 3.) 
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1 0 . 0  - 
thus ‘comes too  late’.  Just below the lower  limit of the 
stability  region,  the  instability  for this  oscillation is 8.0 - 
stopped by non-linear effects a t  a  finite amplitude - 
(Hopf  bifurcation). 

The  shape of the stability  region of figure 2(c) is E 
typical for all kinds of bicycles we investigated  with ~ L , o  
the discussed method.  The  gyroscopic effects of the 
rotation of the  front wheel are essential for  inherent 2 , 0  
stability.  Figure 3 shows  the  dependence of the limits 
of the stability  region at K = 0 on  the  moment of 
inertia 0 of  both wheels. The  absolute size of the 

0 l l 

region grows, while the speed where it occurs approaches 
infinity, as 0 tends  to  zero.  (Note  that  the lower limit 

‘m 6 0- 

l 
0 5.0 10.0 15.0 

Troll Icm) 
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5. Concluslon 

Using  an  absolutely rigid uncontrolled bicycle model, 
for  common  geometries we found a limited  region of 
inherent  stability which is essentially dependent  on 
the  gyroscopic  forces  on  the  front wheel; other 
parameters  only influence the limits  of this region. 
This result is in  accordance  with  former  works [l], [2] 
for  the special case of  rectilinear motion, i.e. 
4 = K = 0. Even without a  rider, most of the bicycles 
are  able  to  move  stably  at  moderate velocities which 
can easily be checked  experimentally. 

Nevertheless, the  question of what role the  inherent 
stability plays for a bicycle guided by a human  rider 
remains  open.  As figure 2 shows,  in  the  stable  region 
the  stationary  state is extremely  sensitive to  the  lateral 
displacement W and a rider  would  hardly be able  to fix 
his centre of mass  with  the  required  accuracy.  Also, 
experimental tests [3] indicate  that bicycles with the 
angular  momentum  of  the  front wheel totally  com- 
pensated  can  be  ridden  ‘hands-off’ by a very skilled 
rider;  obviously  the loss  of inherent stability can be 
overcome by special training of the rider’s balancing 
abilities. Therefore  it  would be an  interesting  task  to 
investigate  whether  the bicycle can be controlled 

‘hands-off’ by lateral  motion of the rider’s body in the 
vicinity of a fixed point. 
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