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ABSTRACT 

Based on the linear form of uncontrolled bicycle dynamic equations, sensitivity of weave and 
capsize speed with respect to design parameters are calculated. Analyzing sensitivity curves, 
significance of design parameters along with the way how stable speed range is changed is 
found. Among 7 significant parameters out of 25, head angle is the most dominant parameter 
followed by front wheel diameter, mass, moment of inertia demonstrating the importance of 
front side design in bicycle stability. Procedure for predicting stable speed range using sensitiv-
ity information is investigated. When a single parameter is changed, the stable range is deter-
mined by that parameter, meanwhile when multiple parameters are changed, stable range is de-
termined by adding up all contributions from each parameter. Using an experimental bicycle 
with variable configuration, the weave speeds at nominal design and changed configuration that 
gives lowest value of weave speed are measured. The comparison between the measured and 
predicted value of weave speed shows good correlation, which demonstrates the validity of the 
sensitivity based stability analysis. 
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1 INTRODUCTION 

Balancing of bicycles has been the subject of numerous scientific studies by many researchers 
since the inception of bicycles [1]. Bicycle balancing can be categorized into two groups ac-
cording to nature of balancing; balancing by controlling rider and uncontrolled balancing by bi-
cycle itself. A rider can balance a forward-moving bicycle by turning the front wheel in the di-
rection of lean, which consequently moves the tire contact points with ground toward the 
direction of lean similar to balancing of an inverted pendulum. Moreover, the centrifugal force 
due to circular motion caused by steering also contributes to balancing. On the other hand, un-
controlled bicycles can balance themselves within some velocity range [2], which is dependent 
on various design parameters of bicycles.. 

To understand driver behaviour by controlling rider to balance a bicycle, Lee et. al. [3] meas-
ured the steering and leaning of rider with respect to a bicycle in recovering balance when un-
expected sudden lateral force is applied to the straight moving bicycle. It was found that the 
rider’s steering and leaning motion is dependent on the lateral acceleration and roll angle, and 
control law for balancing was derived based on this observation.  

Takehara et. al. [4] studied the effects of tire size and offset on the stability of portable, foldable, 
and compact bicycles with small tires mainly for city use using 3-dimensional multibody model. 
They found that larger tire is better for stability, however that tendency is strongly dependent on 
the forward velocity. This result is quite consistent with the fact that the uncontrolled bicycle is 
stable for some velocity interval.  

Meijaard et. al. [2] reviewed extensive list of bicycle dynamic formulations since the start of bi-
cycle dynamics study around 200 years ago, and checked their correctness. They proposed a 2-
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dof linear bicycle dynamic model with 25 parameters, and demonstrated stable velocity range 
for self balancing through eigen value analysis. Based on the formulation by Meijaard et. al., 
Kooijman [5] performed experimental validation on the stable range of velocity for self balanc-
ing. 

The scope of this work is to investigate the effect of design parameters of bicycles on the uncon-
trolled self balancing. For this, the linear form of equations of motion by Meijaard [2] along 
with the definition of 25 design parameters is adopted. Sensitivity of stable range with respect to 
design parameters is computed and the significance of design parameters along with their ten-
dency in design change is investigated. Sensitivity based design procedure to alter range of sta-
bility is proposed. Also through an experiment with a variable configuration experimental bicy-
cle, proposed design procedure for lowering lower limit of stability, which is weave velocity, is 
validated. 

 

2 Bicycle Dynamics 

The bicycle model has four bodies; a rear wheel, a rear frame with the rider body rigidly at-
tached, a front frame including handle bar and fork assembly, and a front wheel, as shown in 
Figure (1). The bodies are connected by revolute joints at the steering head between the rear 
frame and the front frame and at the two wheel axes. In the reference configuration, all bodies 
are assumed to be symmetric relative to the bicycle mid-plane. In this model wheels are circular 
disk without thickness.  

A bicycle moves on flat surface and wheels make point contact with the road without slip. The 
contact between the wheels and the surface is modelled as stiff and non-slipping holonomic 
constraints in the normal direction and by non-holonomic constraints in the longitudinal and lat-
eral direction. It is assumed that there is no friction, apart from the idealized friction between the 
non-slipping wheels and the surface, and no propulsion. These assumptions make the model en-
ergy conservative.  

The bicycle has two degrees of freedom, rear frame roll angle , and steering angel , thus the 
generalized coordinate vector q can be expressed as 

  
T

, q                 (1) 

The constant forward velocity v is given as 

rwv R                       (2) 

where Rrw is the radius of the rear wheel and  is angular velocity. The total of 25 design pa-

rameters for the experimental bicycle are defined in Table 1, and they are represented by a de-

sign parameter vector b as 

 1 2 25, , . . . ,
T

b b bb                 (3) 

The linearized equations of motion at the vicinity of =0, =0 can be expressed as [2] 

2

1 0 2[ ]v g v   Mq C q K K q f              (4) 

where M is a symmetric mass matrix, vC1 a damping matrix linear in the forward speed v, gK0 is 
a stiffness matrix which is the sum of a constant and symmetric part proportional to gravity g, 
and v2K2 is part of stiffness matrix quadratic in the forward speed, and f represent applied torque 
vector associated with roll angle and steer angle.  

T

T T 
   f

               (5) 

Transient response of bicycle without any external force can be expressed by a linear combina-
tion of eigen vectors. For this, the solution of Equation (1) is assumed to be an exponential form 
as 

 exp t 0q q                (6) 
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Figure 1. Geometry of bicycle and design parameters 

 

Table 1. Definition of design parameters for the experimental bicycle 

No. Symbol Definition Value [unit] 

1 w Wheelbase 1.06 [m] 

2 α Head angle 70.0 [16deg] 

3 ε Caster offset 0.02 [m] 

4 Dfw Diameter of front wheel 0.678 [m] 

5 Drw Diameter of rear wheel 0.678 [m] 

6 mfw Mass of front wheel 2.18 [kg] 

7 mrw Mass of rear wheel 2.77 [kg] 

8 mff Mass of front frame 3.97 [kg] 

9 mrf Mass of rear frame 22.27 [kg] 

10 drf 
Distance rear frame mass center -rear 
wheel 0.3 [m] 

11 hrf Height of rear frame mass center 0.5 [m] 

12 dff 
Distance front frame mass center-rear 
wheel 0.883442 [m] 

13 hff Height of front frame mass center 0.64835 [m] 

14, 15, 16 Axx, Ayy, Azz Mass moments of inertia of rear wheel 
(0.07721, 0.16432, 0.07721) 

[kgm2] 

17, 18, 19 Bxx, Byy, Bzz Mass moments of inertia of rear frame 
(0.855397, 1.817005, 

1.637713) [kgm2] 

20, 21,22 Cxx, Cyy, Czz Mass moments of inertia of front frame 
(0.25818, 0.22212, 0.051123) 
[kgm2] 

23, 24,25 Dxx, Dyy, Dzz Mass moments of inertia of front wheel 
(0.07925, 0.15123, 0.07925) 

[kgm2] 
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Characteristic polynomial equation can be obtained as 

 

 2 2

1 0 2det 0s v s g v   M C K K            (7) 

Eigen values with positive real part correspond to unstable motions whereas eigenvalues with a 
negative real part correspond to asymptotically stable motions for the corresponding mode. 
Imaginary eigenvalues correspond to oscillatory motions. 

There are four eigen modes, where oscillatory eigen modes come in pairs. Among them two 
modes, capsize mode and weave mode are significant. The capsize mode corresponds to a real 
eigenvalue with eigen vector dominated by lean: when unstable, the bicycle just falls over like a 
capsizing ship. The weave mode is an oscillatory motion in which the bicycle sways about the 
headed direction. The third remaining eigen mode is the caster mode which corresponds to a 
large negative real eigenvalue with eigenvector dominated by steering. 

Figure 2 shows values of eigen values for the experimental bicycle. The speed at which the ei-
gen value for weave mode becomes negative is defined as weave speed vw, and speed at which 
the eigen value for capsize mode becomes negative is defined as capsize speed vc. Thus the sta-
ble speed range for uncontrolled bicycle is between vw and vc. 

 

 
Figure 2. Eigenvalues λ from the linearized stability analysis of the experimental bicycle. 

 

3 Sensitivity analyses for stability 

The weave speed vw and capsize speed vc, which depend on the design parameters b, determines 
the stable range of an uncontrolled bicycle. Thus if the sensitivity of weave and capsize speed 
with respect to each design parameter is known, stable range can be altered.  

Assume that a design parameter bi is changed by bi, then its new value bi' is given as 

i i ib b b   ,                (8) 

With the changed design parameter, new value of weave and capsize speed, v'w and v'c, can be 
given as 

 1 1 1, , , , , ,w w i i i i nv v b b b b b b 
                      (9) 

which can be computed by solving Equations (1) and (7). Figure 3 shows 25 sensitivity curves 
for weave and capsize speed with respect to 25 individual design parameters defined in Table 1. 
y-axis represents design parameter change within ±20% range. For each design parameter, 
there is a pair of sensitivity curves; the left side curve represents weave speed vw and the right 
side curve represents capsize speed vc for the corresponding design parameter. 
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Sensitivity curves in Figure 3 can be categorized into three groups, Type I, II, and III, according 
to their shape or equivalently effectiveness on altering stable range. Figure 4 shows typical 
shapes for Type I, II, and III sensitivity curves, and in Table 2, the design parameters are calssi-
fied into 3 groups. 

For Type I sensitivity curves, when the parameters are changed, both weave speed vw and cap-
size speed vc are decreased or increased simultaneously. Larger gradient of sensitivity curve 
means bigger change in vw and vc. In case of Type II sensitivity curves, vw and vc are almost in-
dependent of parameter changes, thus effect of design parameters in this group is insignificant. 
For Type III sensitivity curves, vw remains almost constant while vc is decreased or increased. 

Head angle(α), caster offset(ε), wheel base(w), mass of front wheel(mfw), diameter of front 
wheel(Dfw), front wheel moment of inertia with respect to hub(Dyy) belong to Type I, and dis-
tance from front frame mass centre to rear wheel (dff) is the only Type III parameter, and the 
others are Type II. Thus, from the sensitivity curves, it can be observed that among 25 parame-
ters, 18 parameters that belong to Type II are negligible and 6 parameters for Type I and 1 pa-
rameter for Type III are significant meaningful design parameters. Moreover all Type I and III 
parameters are directly related to the front frame and wheel, which demonstrates the importance 
of front side regarding bicycle stability.  

As shown in Type I and III sensitivity curves in Figure 4, head angle (α) is the most dominant 
design parameter, and second level significant parameters are front wheel moment of inertia 
with respect to hub(Dyy), mass of front wheel(mfw) and diameter of front wheel(Dfw), where these 
three sensitivity curves are almost the same since these parameters associated with front wheel 
are strongly coupled to each other. Since the most dominant parameter is head angle, it can be 
observed that stable region could be shifted down with narrower range of stability or stable re-
gion could be shifted up with wider range of stability.  

 

 
Figure 3. Sensitivity curves for weave and capsize speed on the 25 design variable at the 

nominal design configuration of the experimental bicycle.  

 

 

Figure 4. Three types of sensitivity curves 
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Figure 5. Sensitivity curves for Type I and Type III 

 

 

Figure 6. Procedure for predicting weave and capsize speed and sensitivity curves with 

single parameter change.  

 
Table 2  Classification of design parameter according to sensitive curve shape 

Type Design parameters 

Type I α, ε, w, Dfw, mfw, Dyy 

Type II 
Axx, Ayy, Azz, Bxx, Byy, Bzz, Cxx, Cyy, Czz, Dxx, Dzz, hrf, 

drf, mff, mrf, Drw, mrw, hff 

Type III dff 

 
 

4 Prediction of stable range 

Utilizing the sensitivity information, stable range between weave speed vw and capsize speed vc 

can be predicted with design parameters change. Single parameter or multiple parameters can be 
changed. First of all, let’s consider a case where one parameter, for example, head angle, the 
most dominant parameter, is changed. If the head angle is increased to a new value of 

1b
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i i ib b b    as shown in Figure 6, then the stable range is changed from the initial range(vw ~ 
vc ) to new range (v'w ~ v'c ). Since all the sensitivity curves should pass through the two points 
vw and vc regardless of design parameter values, other sensitivity curves are shifted to the newly 
determined stable range.  

The procedure for determining new stable range and sensitivity curves is to be explained in de-
tail. First design variable b1 is changed to 

1 1 1b b b   , and corresponding new stable range in 
the pair of sensitivity curve for weave and capsize speed for bi is determined. Second, the pair of 
sensitivity curve for b1 is down shifted to the x-axis since design is changed to new value 

1 1 1b b b   . Third, sensitivity curves for weave speed and capsize speed for other pairs of sen-
sitivity curves are respectively shifted horizontally to new v'w and v'c .  

It should be pointed out that at the new design configuration,  1 1 1, , , ,i i i i nb b b b b b  , 
sensitivity curves may differ from those of at the original configuration. Thus this analysis is 
valid with linear shape sensitivity curves and small range of parameter change. In general sensi-
tivity curves for any type of bicycle are quite similar to Figure 3 and linear. 

The procedure for single parameter change can be extended to the multiple parameter changes. 
Since all the design parameters are independent, changed v'w and v'c should reflect contributions 
from each design parameter. Thus by summing up all the contributions from individual design 
parameter change, v'w and v'c can be computed as 

   ,
i i

w w w c c cb b
v v v v v v                     (10) 

Figure 7 demonstrate change of stable range when three design variables b1, b2 and b3 are 

changed. Due to the change of b1, weave speed and capsize speed is respectively reduced by 

0.48 and 0.85 [m/s], for b2, weave speed and capsize speed is respectively increased by 0.07 and 

0.18 [m/s], and for b3, weave speed and capsize speed is respectively reduced by 0.01 and 0.02 

[m/s]. If all changes are summed up, weave speed is decreased by 0.51 and capsize speed is de-

creased by 0.69. Then each pair of sensitivity curve is fitted into the new stable range first by 

vertical shift of weave and capsize sensitivity curve, followed by respective individual horizon-

tal shift of weave and capsize sensitivity curve to v'w and v'c. 

 
Figure 7. Stable range change and shift of sensitivity curves due to multiple parameter 

change.  
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Figure 8. Extended stable range and sensitivity curves   

 

Table 3. Design parameter values for maximum stable speed range 

# Symbol 
Sensitivity 

Type 
Definition 

Initial 

Value [unit] 

Final 

Value [unit] 

1 w 

Type I 

Wheelbase  1.016 [m] 0.8160 [m] 

2 α Head angle  70.7822 [deg] 56.7822 [deg] 

3 ε Caster offset  0.0272 [m] 0.0218 [m] 

4 Dfw Diameter of front wheel  0.6858 [m] 0.8230 [m] 

5 mfw Mass of front wheel  1.1818 [kg] 2.1818 [kg] 

6 Dyy Mass moment of inertia of front wheel  0.1710 [kgm2] 0.1368 [kgm2] 

8 dff Type III Distance front frame mass center –rear wheel  0.8834 [m] 1.0601 [m] 

 

Excluding Type II parameters, using 7 Type I and III parameters, maximum stable range is cal-
culated within ±20% of parameter change. The initial stable range of 5.1581~7.9509 [m/s] is 
extended to 8.3330-16.9131 [m/s]. Figure 8 shows initial and new stable ranges along with cor-
responding sensitivity curves, and at Table 3 design parameter values for maximum and initial 
stable speed range are compared. 

 

5 Experimental Validation 

To validate stable range changes depending on parameter, an experimental bicycle that can in-
dependently adjust wheel base, caster offset, head angle are designed and manufactured as 
shown in Figure 9. Head angle can be changed by altering the length of lower link, which is part 
of a 4 bar mechanism comprising steering head and rear frame, and wheel base can be length-
ened or shortened by periscope type parallel mechanism, and caster offset can be adjusted by a 
sliding mechanism attached to the fork. The range of change is ±6°for head angle, between 
+0.06m and –0.04m for wheel base and ±0.04m for caster offset. 

Steering wheel angle, lateral acceleration, wheel rotational speed, body lean angle against bicy-
cle and rear frame roll angle are measured with the experimental bicycle shown in Figure 10. A 
rotary sensor is attached at the handle to measure steering angel, and lateral acceleration is 
measured by an accelerometer at the bicycle CG point, a beam sensor is adopted for measuring 
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wheel rotational speed and a tilt sensor measures rear frame roll angle. To measuring body lean 
angle, a long slender stick was fitted to the axis of the rotary sensor, and the end of stick was at-
tached to the torso belt. Data acquisition PC and battery are loaded at the rear rack. 

According to the stable range design procedure, the lowest value of weave velocity is obtained 
by changing head angle, caster offset and wheel base within the allowable limit of the experi-
mental bicycle. The weave speed at the original configuration is 5.49 m/s, and with change of 
head angle by +6°, wheel base by -0.04m, and caster offset by +0.01m, respectively, the weave 
speed is reduced to 4.46 m/s. 

The weave speed is measured for both initial and changed configuration of the experimental bi-
cycle. Test is carried out on a flat surface shown in Figure 11. On a straight lane of width of 
0.5m, a rider is asked to accelerate bicycle to reach above 7m/s and maintain the speed before 
crossing the line. After crossing the line the rider stops pedalling and take off both hands from 
the handle and stay motionless suppressing any active balancing movement using any part of 
body. If the rider feels bicycle becomes unstable, he grabs the handle and stops the bicycle.   

During the test, roll angle, steer angle and velocity of bicycle are measured. The moment when 
bicycle gets unstable is judged from the roll angle and steer angle. Figure 12 and 13 shows two 
sets of steer and roll angles to judge moment of instability for initial and changed configura-
tions. For each configuration, 10 tests are tried and after discarding results which are not clear or 
difficult to determine the moment of instability, average values of weave velocity at the time of 
instability are obtained. The results are summarized in Table 4, and it can be observed that the 
error between the calculated and measured weave speeds for nominal and changed configuration 
is small. 

 

 

(a) Experimental bicycle 

             

(b) caster offset control part             (c) Wheel base and head angle control part 

Figure 9. Experimental bicycle with variable configuration  
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(a) data acqusition system for experimenntal bicycle                  (b) lean angle measurement 

Figure 10. Data acquisition system of the experimental bicycle.  

 

 

Figure 11. Course of the uncontrolled bicycle test 

 

 

(a) Example of determining unstability in terms of roll and steer angle  

 

(b) Example of determining unstability in terms of roll and steer angle 
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Figure 12. Determination of instability for nominal configuration bicycle with weave speed of 5.49 m/s 

 

 

(a) Example of determining instability in terms of roll and steer angle 

 

(b) Example of determining unstability in terms of roll and steer angle 

Figure 13. Determination of instability for changed configuration bicycle with weave speed of 4.46 m/s 

 

Table 4. Comparison of the measured and calculated weave speed  

configuration        method Calculated values 

[m/s] 

Experimental values 

[m/s] 

Nominal parameters 5.49 5.37 

Changed parameters 4.46 4.66 

 

7 CONCLUSIONS 

Based on the linear form of uncontrolled bicycle dynamic equations, sensitivity of weave and 
capsize speed with respect to design parameters are calculated. Sensitivity curves are classified 
according to their shape or effectiveness on stable range change. Among 25 design parameters, 
18 parameters are negligible and 7 parameters are significant; head angle is the most dominant 
followed by front wheel moment of inertia with respect to hub, mass of front wheel and diame-
ter of front wheel, which are all directly related to the front part of bicycle. Due to the shape of 
sensitivity curves of the angle, stable region could be shifted down with narrower range of sta-
bility or stable region could be shifted up with wider range of stability 

Procedure for predicting stable speed range using sensitivity information is investigated. When 
a single parameter is changed, the stable range is determined by that parameter, meanwhile 
when multiple parameters are changed, stable range is determined by adding up all contribu-
tions from each parameter. It is demonstrated that by changing design parameters within allow-
able limit, stable range can be considerably expanded. 

An experimental bicycle that can alter head angle, wheel base and cater offset is designed and 
manufactured. The lowest weave velocity is obtained by changing head angle, caster offset and 
wheel base within design change limit. Using the experimental bicycle, the weave speeds at 
nominal configuration and changed configuration that gives lowest weave speed has measured. 
The comparison between the measured and predicted value of weave speed shows good correla-
tion, which demonstrates the validity of the sensitivity based stability analysis. 
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