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ABSTRACT

Optimal linear quadratic control theory is applied to longitudinal and lateral control of a high-
performance motorcycle. Central to the story is the use of sufficient preview of the road to obtain
the full benefit available from it. The focus is on effective control nearto the cornering limits of
the machine and gain scheduling according to speed and lateral acceleration is employed to ensure
that the linear controller used at any time is that most appropriate to the runningconditions.

The motorcycle model employed and the control theory background are described briefly. Opti-
mal preview controls and closed-loop system frequency responses are illustrated. Path-tracking
simulations are discussed and results are shown. Excellent machine control near to the feasible
cornering limit is demonstrated.

Keywords: motorcycle, rider, optimal preview control, limit, adaptation, gain scheduling, fre-
quency response, path tracking.

1 INTRODUCTION

An optimal-preview-control-based theory for high-quality car driving and motorcycle, bicycle and
unicycle riding has been under development for several years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
The theory relies on the following ideas: (i) skilled piloting (used to describe vehicle control
generally) is a low-bandwidth, smooth activity, which becomes optimal controlin the limit; (ii)
the necessary control depends heavily on adequate path preview - the pilot needs to know the
intended path or to be able to see it clearly for some distance ahead; (iii) the control also depends
on the pilot knowing the dynamics of the vehicle; (iv) linear optimal preview control theory can be
used to find the control inputs, to steering, throttle and brake, which minimize path-tracking errors,
while conserving control power, for operating regimes describable by linear, constant-coefficient
equations; (v) the full range of operation of a well-engineered vehicle can be split into such regimes
by finding dynamic equilibrium (trim) states and considering small perturbationsfrom such states;
(vi) this implies that locally optimal controls can be found. Such controls can beinstalled as they
become appropriate, according to the running state of the vehicle.

Once the method had been established for near-straight-running [1], steering control of a simple car
with saturating tyre lateral forces was studied, first in front-axle-limited form [10] and then in rear-
axle-limited form [11]. Scheduling by front-axle sideslip and by rear-axle sideslip respectively
were shown to yield excellent control in near-limit cornering. The technique was applied to speed
control [5, 8] and then to combined longitudinal and lateral controls such that tracking ofpaths
defined by both x- and y-displacements at regular time intervals became feasible [13, 14]. The



procedure requires that a nonlinear simulation model of a specified vehicleis run to steady state
to establish a whole spectrum of trim conditions; that a small-perturbation, linear model uses each
trim state to establish a locally-valid linear model; that each linear model is used to generate a
locally-optimal control; and these controls are used in the gain-scheduling scheme which ensures
controls appropriate to the running conditions in a general manoeuvre.

In the present case, the previously separate representations of steering and speed control for a high-
fidelity and well-documented motorcycle [15, 16] are combined into simultaneous path and speed
(x, y, t) controls. Optimal throttle, steering and rider-lean controls are generated for trim states with
variations in speed and lateral acceleration, and they are used to illustrate how the controls change
as the running conditions alter. The properties of the rider-controlled motorcycle are illustrated
by frequency response calculations. Path-tracking simulations, with gain-scheduling to follow
variations in speed and lateral acceleration, are used to verify that the controls are capable of good
operation near to cornering limits.

2 CONTROL THEORY BACKGROUND

The nonlinear continuous-time motorcycle model is linearized for operation in the vicinity of a
defined trim state. The linear model resulting will normally have constant coefficients. The model
is arranged to include the absolute longitudinal and lateral displacements of itsreference point
as states and to have normalized throttle displacement, steering torque and rider-upper-body lean
torque as control inputs. The linear model is put into discrete-time form, usinga time step ofTs,
chosen to accommodate the highest-frequency modes included. In an inertial reference system,
a path longitudinal and lateral profile is defined by discrete (x, y) points which areTs apart in
time. In the inertial reference system, illustrated in Figure1, the road dynamics are those of a
shift register or delay line and the equations describing these dynamics areof the same form as
the equations of the vehicle. The two sets of equations are combined to yield a composite system,
with its state-vector having a partition for the motorcycle and a partition for the road. At this first
stage, the motorcycle part and the road part are uncoupled.

Suppose the discrete-time linearised vehicle equations are:

xv(k + 1) = Avxv(k) +Bvτ (k) (1)

yv(k) = Cvxv(k) (2)

with discrete-time counter k, vehicle state vectorxv and control inputτ , and let the road equation
be:

ηr(k + 1) = Arηr(k) +Brηrn(k) (3)

with 2np x 1 road stateηr and road sample values that enter the system at timekTs being the 2 x
1 ηrn, 2 being the number of previewable disturbances andnp being the number of preview steps
included. In the present case, the input is:

τ (k) = [g1 τs τr]
T (4)

g1 being throttle displacement,τs being steer torque andτr being rider-upper-body lean torque.
ηrn here represents both x-displacement and y-displacement demands.
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Figure 1. Diagrammatic representation of a motorcycle tracking a specified path, with the
whole system referenced to ground. Such a description implies that the road sample values
pass through a serial-in, parallel-out shift register operation at each time step.xdem andydem
define the intended path whilextrim andytrim are the discrete path points at intervalsTs

implied by the current trim state. Control inputs are sums oftrim controls, state-feedback and
path-preview contributions.

To represent the road shift register process,Ar is 2np x 2np and has the form:
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andBr, corresponding to the two previewable disturbances, is2np x 2 and has the form:

Br =

[

0 0 0 0 0 0 . . . 1 0
0 0 0 0 0 0 . . . 0 1

]T

(6)

Here,02 is a 2 x 2 zero matrix whileI2 is a 2 x 2 identity matrix.

Combining vehicle and road equations together, the full dynamic system is defined by:
[

xv(k + 1)
ηr(k + 1)

]

=

[

Av 0
0 Ar

] [

xv(k)
ηr(k)

]

+

[

Bv

0

]

τ (k) +

[

0
Br

]

ηrn(k) (7)

which takes the standard discrete-time form:

z(k + 1) = Az(k) +Bu(k) +Eηrn(k) (8)

y(k) = Cz(k) (9)

If ηrn contains samples from two uncorrelated white-noise random sequences,the time-invariant
optimal control which minimizes a quadratic cost functionJ , given that the pair(A,B) is stabi-
lizable and that the pair(A,C) is detectable [17], is:

u∗(k) = Kz(k) (10)
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whereK =
(

R+BTPB
)

−1
BTPA, given that the cost functionJ is:

J = lim
n→∞

n
∑

k=0

{zT (k)Qz(k) + uT (k)Ru(k)} (11)

andP satisfies the matrix-difference-Riccati equation:

P = ATPA−ATPB
(

R+BTPB
)−1

BTPA+Q (12)

HereQ = CTqC andq is a diagonal weighting matrix, diag(q1, q2, . . .), with terms correspond-
ing to the number of performance aspects contributing to the cost function, and R is a 3 x 3
diagonal weighting on the control inputs, normalized throttle pedal displacement, steering torque
and rider-lean torque.C is chosen such that the quadratic termzT (k)Qz(k) in the cost function
J penalizes the sum of the squares of the differences between the (x, y) coordinates of the car’s
reference point and the corresponding (x, y) of the road, over the optimization horizon. Since there
are only these two aspects of performance in the cost,q is 2 x 2.

Optimal controls are calculated using Hazell’s MATLAB Toolbox [18]. The Toolbox requires
only the setting up of the standard state-space (A, B, C, D) matrices, the setting of weights on
tracking errors and control efforts, and the calling of special functions, for the optimal controls to
be revealed. An illustration of path tracking is given in Figure2, where the motion is referred to
the motorcycle rather than the road. The transformation is explained in [1, 2, 3, 4, 6]. The preview
gains inevitably fall to zero as the preview distance increases, so that the number of preview points
included can be chosen, by trials, so that effectively the full benefit available is obtained. This is
referred to as “full” preview. Only full preview control is of interest here, since the control quality
is inevitably reduced if the preview is curtailed [19, 20].

3 MOTORCYCLE REPRESENTATION

The motorcycle model used is of high fidelity, describing a Suzuki GSX-R1000 machine. The
base model with all of its parameter values is documented in [15]. The chain-drive treatment is
discussed in [16]. Since those descriptions were written, the model has been re-cast so that it uses
ISO-standard axes and an engine and partial transmission model has been added, so that the three
control inputs to the motorcycle are normalised throttle displacement, steering torque and rider
upper-body lean torque. The motorcycle geometry is shown in Figure3 and the body structure
and freedoms allowed are shown in Figure4. The driving torque applied to the sprocket,τe, is
restricted to positive values corresponding to positive throttle displacements. It is a function of
the normalised throttle displacement, the engine speed and the motorcycle speedaccording to the
relations:

f1 = sin (arctan (Btg1 − Et (Btg1 − arctan (Btg1))))

f2 = f1Ds sin [Cs arctan (Bsω − Es (Bsω − arctan (Bsω)))] /ω − ftq

f3 = 3− 2 sin (arctan (0.2 (V − 15)))

τe = max (0, f2f3)

with coefficientsBt = 1.8,Et = -12,Bs = 0.0014,Cs = 1.6,Ds = 1.2e5,Es = -8, andftq = 20,
ω being the sprocket angular velocity in rad/s and V being the motorcycle speed in m/s. ftq is a
friction torque. The sprocket driving torque is depicted in Figure5. The upper part of the figure
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Figure 2. Snapshot of motorcycle in a general motion state using local reference axes [1, 2, 3,
4, 6]. The current trim defines points along a circular path whilethe intended path points are
known through the preview. Differences constitute errors which are employed, together with
the optimal preview gains, in the preview part of the control. Each complete control signal is
made up of a trim-state part, a state-feedback part and a preview part.

shows the functionf2, with the lower part showing the gear ratio or torque multiplier function
f3. When the throttle displacement is negative, braking torques are applied in proportion to the
displacement. The front brake torque acts between the lower forks and the front wheel, while that
at the rear acts on the rear wheel and reacts on the swing arm. The torqueratio is set by parameters
to 87.5% front, 12.5% rear.

4 CALCULATIONS

4.1 Determining trim states and optimal gains

Firstly, the nonlinear simulation model is run up slowly through its speed range ina straight line
to find an approximate throttle-opening / trim-speed relationship. The approximate trim states are
then used to generate rough optimal control sets for chosen speeds covering the range. These rough
controls allow the motorcycle to be run under rider-control with sufficient quality to accurately
track straight paths at speeds of 10, 20, 30, 40, 50, 60 and 70m/s, establishing true trim states
that can be stored. The generation of optimal controls requires that the sampling interval,Ts, and
the weightings on control power and on x- and y-tracking errors to be specified. HereR is chosen
to be diag(1000, 1, 1), reflecting the different operating ranges of thethrottle displacement, the
steering torque and the rider upper-body lean torque. Then, based onprevious results [3, 6, 7], Ts
is set to 0.05 s and a preview horizon of 10 s is chosen as representativeof real riding. By trials,
full preview within the 10 s horizon (200 preview points) is found to occur with q = diag(100,
100), which attaches equal weight to x- and y-errors.
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Figure 3. Scaled motorcycle model showing the masses of the seven rigid bodies included,
each with area in proportion to mass.
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Figure 4. Motorcycle model bodies showing tree structure and freedoms allowed.

Accurate optimal controls can now be obtained from the stored straight-running trim states, so
that a clothoid path, having curvature increasing in proportion to distance travelled [21], can be
followed at a chosen speed of say 10m/s until the lateral acceleration reaches 1m/s2. The end
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Figure 5. Engine torque as a function of engine speed and normalised throttle opening (upper)
and gear ratio torque multiplier (lower).

condition is an approximate trim state, allowing rough optimal controls to be foundfor 10m/s
speed and 1m/s2 lateral acceleration. These controls are next used to track a circular path of
radius 100 m at 10m/s to establish a true trim state, for which an accurate optimal control set can
be found. Repetition for lateral accelerations up to the possible limit in 1m/s2 steps and then for
each of the other speeds allows the storage of a whole range of trim states and of the corresponding
optimal controls. For speeds of 10, 20 and 30m/s, a lateral acceleration of 10m/s2 could be
sustained but for the higher speeds, 9m/s2 was the limiting value.

4.2 Optimal gains

Each optimal-gain set contains state-feedback and preview gains relating toeach of the three con-
trols allowed. The state-feedback gains are those of the standard LinearQuadratic Regulator prob-
lem [1, 2, 4, 6, 8] and are not so interesting. On the other hand, preview gains show some intriguing
patterns that are worthy of illustration. Examples are given in Figures6, 7 and8 for an arbitrarily
selected speed of 30m/s. Similar figures relate to other speeds in the range. Figure6 shows the
gain sequences relating normalized throttle displacement to x-errors, Figure7 shows those relating
steering torque to x-errors and Figure8 shows those relating steering torque to y-errors. The full
set of gains includes throttle displacement to y-error and rider-upper-body lean torque to x-error
and to y-error sequences, which are all relatively small and thereforenot so significant. The sym-
metry of the straight-running case implies that cross-gains, relating throttle to y-errors or control
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torque to x-errors should be zero for zero lateral acceleration, as indeed they are. However, as
the lateral acceleration builds, so does the extent of the cross-coupling between the longitudinal
control and the lateral errors and between the lateral controls and the longitudinal errors. The
figures illustrate the full-preview idea, with each gain sequence converging on zero before the pre-
view horizon is reached. For 30m/s speed, the full 200 preview points are not, in fact, needed
but they are for the highest speeds reachable. Figures6 and8 show the direct-gain sequences to
follow patterns quite different from those of a car as the tyres approachsaturation [10, 11], arising
because the motorcycle tyres generate side-force primarily by cambering while those of a car do
so by side-slipping.
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Figure 6. Optimal preview throttle displacement to x-error gain sequences as functions of
lateral acceleration for 30m/s speed andTs=0.05 s.

4.3 Closed-loop system frequency responses

Each of the trim states stored has a corresponding optimal control. The control can be installed to
the motorcycle to make a rider-controlled whole and the standard MATLAB function ”dbode” can
be employed to compute the frequency responses of the closed-loop system. In each case, there
are two situations to be treated, the one involving x-errors, the other, y-errors. In either event, the
sinusoidal path perturbation implicit in frequency-response calculations isat the preview horizon
and there is a transport delay associated with the travel of the motorcycle through the preview
distance [4, 5, 9, 10, 11]. Perfect tracking is implied by a gain of unity or 0 dB and a system
phase lag equal to the transport lag. Figures9 and10 demonstrate the tracking capabilities of an
arbitrarily chosen system with 40m/s speed and 6m/s2 lateral acceleration. The figures show
that, for operation near to this trim state, perfect x-tracking will occur as long as the bandwidth
of the disturbance is less than 0.7 rad/s and that perfect y-tracking will occur for bandwidths less
than 0.5 rad/s. For frequencies higher than these limits, there will be some gainattenuation. Only
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Figure 7. Optimal preview steer torque to x-error gain sequences as functions of lateral
acceleration for 30m/s speed andTs=0.05 s.
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for substantially higher-frequency disturbances will any significant phase distortion be introduced.
The results shown are typical of those for other speeds and lateral accelerations.
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Figure 9. Closed-loop system frequency responses to x-perturbations for 40m/s speed,
6m/s2 lateral acceleration trim state. x-tracking is almost perfect for frequencies less than
0.7 rad/s.

4.4 Path-tracking simulations

Tracking simulations are conducted under the following terms. Matrices of trimstates, trim con-
trols, state-feedback gains and preview gains, covering speeds of 10, 20, 30, ... 70m/s and lateral
accelerations of 0, 1, 2, ... 9m/s2 are supplied as data. The lateral symmetry of the motorcycle
is exploited to avoid dealing with negative lateral accelerations. Initially, the rider-controlled ma-
chine is in a chosen trim state and the equations of motion of the closed-loop system are integrated
using a 0.5 ms time step through 100 steps, updating the state byTs, the discrete time step for the
control calculations. For the next updating, the speed and lateral acceleration values are used in
a bilinear interpolation scheme, (http://local.wasp.uwa.edu.au), to select the newtrim states, trim
controls and control gains. Integrations and adaptations follow in sequence, with storage of all
the results needed for plotting, until the required number of simulation steps has been completed.
Whenever the lateral acceleration is negative, the signs of the out-of-plane trim states and the
steering and rider-lean torques are reversed.

To demonstrate the capacity of the control scheme to ensure good-quality tracking under near-limit
running conditions, a path that starts with a straight, follows with a clothoid transition curve and
then becomes circular is designed. The initial speed is taken as 10m/s and the motorcycle is at
trim for that speed and straight running. After a short time, a speed increase is demanded before
the motorcycle reaches the transition curve. The speed increase demanded is tuned by trials so that
the circular turn is traversed with extremely high lateral acceleration, actuallyreaching 10.76m/s2
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Figure 10. Closed-loop system frequency responses to y-perturbations for 40m/s speed,
6m/s2 lateral acceleration trim state. y-tracking is almost perfect for frequencies less than
0.5 rad/s.

at one point in the run shown in Figures11 and12. In the first figure, the motorcycle path and
the path demand are shown to be almost indistinguishable, the speed demand can be seen to be
followed very closely and the throttle control input can be observed. In the second figure, rider
lean torque and steer torque control inputs are plotted, the former being much smaller than the
latter as in [3, 6, 7]. In the lower part, scaled angles include the swing arm angle, the steer angle,
the rider-upper-body lean angle and the machine roll angle, which reaches−54.5◦ just prior to the
circular turn. The motorcycle pitch angle and the frame twist angle are not shown since they are
rather small, varying between−1.2◦ and0.14◦ and between−0.044◦ and0.002◦ respectively.

Naturally, tracking runs result in failure if too much is demanded of the rider/machine combina-
tion. Paths are made difficult by sharp changes of direction which constitutehigher-frequency
excitation, see Figures9 and10, and, obviously, by high curvature and high speed. The looser the
control is, that is the lower the values of the weightsq1 andq2 used in the control computations,
the more preview is required for full benefit but also the more smoothing of the path demand there
is. Therefore, with loose control, it may not be so damaging to include sharpfeatures in the path,
but with tight control, rapidly varying control inputs will become necessaryand this may lead to
loss of control. Especially here, rapid steering is likely to excite the wobble mode into oscillation,
the more so as the speed rises, since the damping of the mode becomes less as the speed rises from
about 40m/s [15]. Bursts of wobble-frequency control action can be seen in Figures13 and14
from a trial in which the path is a low-pass-filtered sinusoid following a straight, notwithstanding
that the path and speed tracking are both excellent and the demand on the motorcycle is high. To
eliminate that feature, the motorcycle or the controller or both would need further tuning. The
machine at high speed would benefit from increased steering damping or the use of a steering
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Figure 11. Path tracking of the rider-controlled motorcycle with bilinear adaptation of con-
trols over speed and lateral acceleration. The path is shownin the upper part and the speed,
speed demand and the normalized throttle displacement, thelast scaled by a factor of 100, are
shown in the lower part.

compensator [22, 23, 24, 25]. The rider would probably improve by the inclusion of bandwidth
limitations to prevent unrealistically rapid control activity [12, 13, 14].

5 CONCLUSIONS

Accurate speed and steering control of a high-performance motorcyclenear to its cornering limits
have been shown to be possible using optimal linear quadratic regulator control methods with full
preview of the path to be followed. Many trim states for variations in speed and lateral acceleration
need to be found and the corresponding optimal controls determined off-line. Illustrative examples
of the nature of the optimal preview gains as functions of time ahead, motorcycle speed and lateral
acceleration have been included and the perfect tracking expected withinthe restrictions implied
by small perturbations from a trim state have been demonstrated by closed-loop system frequency-
response plots. In simulations, the trim states and the optimal controls constitute data and enable
the identification by interpolation of trims and gains that provide a local reference for the motions,
such that a linear treatment is appropriate. With the addition of special procedures for dealing with
severe braking [26], it is likely that good tracking of general feasible paths will be possible even
for racing conditions.

It is known from previous work that the closed-loop system bandwidth can be increased by using
tighter control [4, 5, 9, 10, 11]. This is a mixed blessing, since loose control leads to path smooth-
ing or corner cutting and this can contribute to robustness of the path-tracking performance. If
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Figure 12. Path tracking of the rider-controlled motorcycle with bilinear adaptation of con-
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the path to be followed is designed to be smooth in the first instance, this smoothingfunction will
not be needed and it can be expected that tight control will be best. However, if the path contains
sharp features implying higher-frequency disturbance to the motorcycle,looser control may well
be better. In setting up a pilot with generally good properties, and in describing paths to be tracked,
these are issues that need to be considered.
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