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ABSTRACT

In this paper, a new rider-motorcycle system including front and rear suspensions is modeled
using multi-body dynamics, and the stabilization control system is designed for the linearized
reduced-order model. We have already modeled the rider-motorcycle system taking into account
of the lean angle of the rider’s upper torso. The front and rear suspensions will be necessary for
dynamical analysis of a motorcycle in braking situations. For the derived dynamical model with
the front and rear suspensions, the front-steering assist controller is designed utilizing H- control.
By carrying out simulations, the driving stability of the rider-motorcycle system with the
front-steering assist control is investigated.
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1 INTRODUCTION

Recently, electric stability control systems for four-wheel vehicles are well studied. A motorcy-
cle may be required to implement one of these systems in the future. Realizing these systems
will need not only wheel control but also stability control by front steering.

Detail simulation models for motorcycles have been developed based on Lagrange’s equation of
motion [1], [2], [3], and it enables simulation of motorcycle dynamics with a commercial soft-
ware. On the other hand, analyzing the dynamical system for designing a control system often
requires an appropriate reduced-order model. We have already modeled the rider-motorcycle
system using multi-body dynamics [4] taking into account the lean angle of the rider’s upper
torso [5], [6]. It has been demonstrated that a front-steering assist control stabilizes the motorcy-
cle against applied impulsive disturbance on the front wheel [5], [7], [8]. For driving in a
straight line at a low speed, references [7] and [8] have experimentally verified the stabilization
capability of the front-steering assist control. In braking situations, the front and rear suspen-
sions will be necessary for dynamical analysis of a motorcycle.

In this paper, a new rider-motorcycle system including front and rear suspensions [1], [2], [3] is
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modeled. And the stabilization control system is designed for the linearized reduced-order
model in steady-state circular turning. In particular, the driving stability of the rider-motorcycle
system is investigated under the condition when the pitting motion is occurred due to braking.

2 MODELING

2.1 The Rider-Motorcycle System

The ten-degree of freedom rider-motorcycle system [5] includes the lean motion of the rider’s
upper torso: 6,y rotating around the x-axis of the rear frame of the motorcycle, the steering an-
gle: 0 and the rotation of the front and the rear wheel. In addition to them, this model includes
the compression angle of the rear suspension: y and the compression length of the front suspen-
sion: lyp, which are restrained with a spring and a dumper respectively. The rider’s upper torso
is connected to the handle with a spring and a damper.

The dynamical model of the rider-motorcycle system is shown in Figure 1. It consists of five
bodies; the rear frame (the rear frame, the rider’s lower body, the engine and the fuel tank), the
front frame (the front fork, the steering head and the handle bars), the rear wheel, the front
wheel and the rider’s upper torso. Table 1 shows specifications of the model [9]. The notations
of Figure 1 are as follows; A: center of mass of the rear frame, U: center of mass of the front
frame, C: center of mass of the rear wheel, D: center of mass of the front wheel, W: center of
mass of the rider’s upper torso, ma: mass of the rear frame, my: mass of the front frame, mp:
mass of the rear wheel, ma: mass of the front wheel, my,: mass of the rider’s upper torso, P,:
ground contact point of rear wheel, Ps: ground contact point of front wheel, /: caster angle, =
rr- driving/braking torque of rear wheel, . driving/braking torque of rear wheel, . braking
torque of front wheel, and z¢: steering torque. The center of mass of each rigid body is defined
as the origin of each standard coordinate system.

The generalized coordinate and the generalized velocity are defined as

Q:[ROAT ®OAT 6 0, 0. 0, v lyp
v |

]T 1)
s=[Vo 00’ 5 b, 6 O, v ]

(a) Side view (b) Rear view
Figure 1. Dynamical model of rider-motorcycle system



Table 1. Specification of Motorcycle

Mass Ma my My Mmc Mp
[kg] 164.43 15.5 50 19.2 10.9
Inertia I'oaxx 1" ouxx I owx I"ocxx I opxx
26.04 1.74 4,75 0.41 0.26
oy I'ouyy Iowyy F'ocyy I'opyy
[kgm?] 24.73 0.3 0 1.68 0.47
I 'OAzz I 'OUzz I IOsz I 'Osz I ‘ODzz
26.28 04 4.75 0.41 0.26
Length a a, as a, b,
0.545 0.523 0.357 0.50 0.707
[m] b, C1 fy €1 R
0.307 0.05 0.13 0.049 0.312
Spring Kux Kz Kes Kas Ry
stiffness 350 172.2 40000 25000 0.299
[Nm/rad] [N/m] [N/m] [N/m]
Damping Cux Cw: Ces Cus
coefficient 20 26.4 1000 2000
[Nms/rad] [Ns/m] [Ns/m] [Ns/m]

Where

ROAT :[XA Ya ZA]’ ®OAT :[02 0, Hy]

The dynamical model has twelve degrees of freedom: the position Rp, of the rear frame in the
inertia coordinate system, the Euler angles @, 0f the rear frame, the steering angle J, the roll
angle of the rider’s upper torso 6, the rotation angle of the rear wheel 6., the rotation angle of
the front wheel 6, this model includes the compression angle of the rear suspension y, the
compression length of the front suspension: Iyp.

Let Coa be a rotation matrix that completes the rotation of a vector from the inertia coordinate
system to the A coordinate system. Then the relationship between the derivative of the genera-
lized coordinate and the generalized velocity is given as follows

Q:a—HS: Con Oz S . @)
0S Oy, |
Introducing velocity vectors:
Ay =g ag], 3

(i:A, U, C, DandW)

and the angular velocity vectors:



Qo =Mo, '(;)OA
= Cy(é’y)‘1 .Cx(6,)"-e,-0, +Cy(¢9y J'e, -6, +e,-0,
Qo =Cp " Qon +e, 2 (4)
Q= C;\l/v Qop €, '9wx
Quc =C-Ch-Q* +e, (7 +6,)
Qo =CpCay Q" +Cp, e, -5 +e, -0,
the velocity matrix H is obtained with Jacobian as Equation (5).

H:[A(T)A AZ)U A(T)w A(T)c AED]T

Iy 0, 0, 0O, 0;; Oy 0O, 0, ]
0O, I 3_ 0; O 0; Oy O 0O;,
CI\U CI\U 'RLU RUH "€, 031 031 031 031 031
0O, C;li €, _ O;, 0; Oy O;, O;,
C;w C;w 'RLW 031 RIATW "€y 031 031 031 031
= 03 CZV)/_ 031 €y 031 031 (231 031 (5)
C/Txc CZC ) RLC 031 031 031 031 CJTC : ch ey 031
0O, . CT:/T\C - 0, 0, €y 0, €y 0,
CJD 'C/Txu CUDT‘ (C&JT' RAUT) CJD '(_ ﬁUH + |5UD )T ‘€, O, 0;; Oy O, - CLTJD "€,
+CUD '(RUD 'CAU )
0, Clo - Chu Clo €, 0O,, 0, e 0O, 0,

v, @i, & 6. 6, 6, v o]

2.2 Forces and Torques of the Rigid Bodies

The forces F and the torques N to the rigid bodies are described as Equations (6) and (7) respec-
tively.

Foa= CcT)A Foa= _CCT)A '(mA 9 'ez)_ Fac

Fou = CcT>u Fou=- gu '(mu 9 'ez)_ Fuo

FéW:CgW Fow=- cTJW'(mW'g'ez) (6)
Féc = C(T)c 'Foc= _CCT)C '(mc "g-¢€, +fcpr)+ FAC

Foo = C(;D Fop= _CcT>D '(mD -g-e, +f )"‘ Fuo

" -1
N OA™ (Txp _Txa)'ex Ty 'CAC 'ey — T

-1 =~
f'CAD ‘€ _RAC 'FAC

y
' _ -1 -1 g
Nou_sz'Cwu €, — 7€, +7,-Cyp 'ey_RUD'FUD

7
N,OW :_(Txp _Txa)'ex Ty €, + 7 'CWU ‘€, ( )

;o =) = 1
NOC =Ty 'ey +7, 'COC €, + RCP 'COC 'fopp

r_ -1 —~ -1
Nop =7 € Ty ‘Cop "€, +Rep - Cop 'foqq
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(a) Front suspension (b) Rear suspension

Figure 2 Suspension force

Ty 1s the lean torque from the rider’s upper torso, 7, is the reaction torque of the rider’s arm
along with z-axis of rider’s upper torso, 7, IS the lean torque of the motorcycle, and z,; and 7,
are self-aligning torque from the rear wheel and the front wheel. ~ describes the notation of a
skew symmetric matrix for exterior product.

Fac and Fp are interaction caused by front and rear suspensions. Figure 2 shows the displace-
ment of suspensions. The rear suspension force is assumed to be proportional to the displace-
ment of rear suspension: ARac. The front suspension force Fac is simply described along with
the z-direction of the U coordinate.

Fup =, - (Kds-lud +Cds-fud ) @®)
Foe =Cp -€, (- Kcs AR, —Cds- AR, )

ez-{Kcs~|RJC|~,/2i1—coswi+Cds-|RJc|-1//} ©)

fopr and fopt in the equation (3) are the tire forces,

= ~ (10)
fcpr = fcx : DOCxx + fcy "€, DOCxx + 1:cz ' DOCxx 'COC 'eyi
where Doy 1S the unit vector of the x-direction of the rear wheel:
— €, COC ‘e,
OCXX = ‘_ e ‘ (11)
ocC

In Equation (10), f and f;, are the longitudinal and the lateral tire force. As it discussed in
Chapter 2, the nonlinear rider-motorcycle model has to be linearized for designing a stability
control system. Referring to Magic Formula [3], [10], to include the nonlinear characteristics of
tire cornering forces in the linearized model, the tire cornering forces can be expressed using
hyperbolic tangent function [11]:

tanh(a,, - ¢)
ab “ ez

u-u

F, tanh(a,, - F, tanh(a,, - 6, 12
fcy = Hiax '{(CSME+C51ZJ'M+[C521€+C322J’ (—2 )} (12)

aclbcl aczbcz
2
1_( fo J |
1:cxmax

fcz = Kcz ARr +Ccz 'ARH

fcx = Hpax -
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Figure 3 Characteristic of tire force

where ¢ is the slip rate, a,=25, a, .b,=1, a4=16, ac; . b,=10, a,=1, a,.b,=1.6, Cs1,=60.64,
Cs12=4435.84, Csp=14.60, Cs2,=73.00, K,=150000, C.,=1000. Figure 3 shows the characteris-
tic of the rear tire force given as (12) and Magic Formula. The tire forces of the front wheel are
derived similarly.

2.3 Equations of Motion
With the velocity matrix H, the equation of motion is expressed

M, H=F,, (13)

where My and Fy represent the mass matrix and the force matrix:

MHO:diag(MA Joa My Jou My Joy Mo Joo M, ‘]OD)

T T T T T (14)
Fy=ox Tov Tow Toc FOD]
Féi _EXOi M, 'VC,)i
Lo = = '
N’Oi _Q’Oi Joi 'Q’Oi
1 00
M,=m,-|0 1 0} (15)
0 01
I, 0 O
Joi=|0 I, O
0 0 I,

(i:A U, C, Dand W)

Rewriting Equation (13) with the generalized velocity, the equation of motion is obtained as

M, -S=F.. (16)

Ms and Fs are respectively the transformed mass matrix and the transformed force matrix:

oH Y (aHj
M.=1Z==1 . Mm. |22
S (as) Ho -\ as

8HT( d[aHJ j
F.=|\—| |F,-M,, -—|—|-S
$ (OSJ L AN

6

17)



From the equations (2) and (16), the nonlinear state-space description is represented:

%= A, (x)x+ B, (x)u+E,(x) (18)
where
oq 0, diag[C,, I, 1 1 1 1 1 1]
A= 8 |- oHY d(oH
S - - _l . — . . — —
0, Mt Lx| |G M as) Mo dz(asj
L oS
012><3 012><I
By = Ms™ (OFs B = Ms™ - F,
L ou
The state vector x and the input vector u are given as
Q TI’I’ Trr
X:|: :|, u= Trf = Trf ' (19)
S
Tt Tie T T4

3 ANALYSIS OF THE LINEARIZED STATE-SPACE MODEL

3.1 Linearized State-Space Model

To analyze eigenvalues and frequency responses, Equations (2) and (16), which give the nonli-
near dynamical model, are linearized around an equilibrium point [5]. When Qq and S, is a set
of the equilibrium point with the generalized coordinate and generalized velocity respectively,
Equations (1), (2) and (17) are linearized as:

Q=0Q,+AQ, S=S,+AS,
Mg =M, +AM;, F, =F,, +AF;,

. . i (20)
R_RQ R
oS 0S|, oS
Using Equation (20), Equations (2) and (16) can be linearized:
AQ:A@SO+@ AS, (21)
oS 0S 0
Mg, - AS = AF,. (22)
Thus the linearized state-space description is derived
AX = A AX + B, Au, (23)
where
d ( C C
a(%soj % O
A = 0 0 , B = a4 OF| |, (24)
1 OF 4 OF Mg, - —
Mg, - — Mg, - —= au |,
aQl, os |,
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AQ rr
AX = , Au=|At, |
AS
At
3.2 Eigenvalue Analysis and Frequency Response Analysis
Table 2 Eigenvalue of the system matrix (Velocity: 40 km/h)
Rollangle |0 [deg] 19.7 [deg]
oy -1.20 -0.02
o -1.98 -26.53
o3 -4.11 -4.11
Oy -12.43 -12.11
os 0.00 -0.50
By -154 + 387 if| 012 + 414 i
B2 -2549 + 3082 i|-1097 + 3658 i
Ba -198 + 789 i 027 + 7.09 i
B4 719 £+ 4722 i -1852 + 4566 i
Bs -1.71 £ 3043 i| -258 + 2834 i
Bs 255 = 239 i
50 0 T
LTI il 1@
1 ™~ Faq A ."‘.
. ~ SN
-100 ~_ <] -50 R
— NN — il L ,.
g S % y me PR %\’;: X Q‘i .
= -150 S = -100 N T
‘5 ‘5 N T FRem
O QO ™
\\
-200 -150
_:al__:a2 “““ 0,3 - Bl---:BZ """ :[33_-_:[34_:135_:[36
2250 [T T T 200
10° 10% 10" 10" 100 100 10’ 100 107 100 10" 10" 100 10°
Frequency [Hz] Frequency [Hz]
(@) Non-vibration modes (46/47) (b) Vibration modes (46/4t)
0 0 I
i
Il
y i 5
-50 ~ Ar{:“
o S . —. 50 LN
& -100 ™~ T 3 A\ > e
£ 150 T g NN
-15 ™ < TN
© © _100 I~ \&‘: 3
2200 bt
—I(Xl—— I(Xz ----- .OL3’ _:Bl---:BZ ..... ;B3_._:B4_:B5_:B6
_250 T TTTITE T T TTTIF T T TTTIT _150 T T ITIIHE I 913 T T ITIIOE T T T TIROT T T TPLIE Y
10° 107 10" 10° 100 100 10’ 100 107 10" 10 100 100 10’
Frequency [Hz] Frequency [Hz]

(c) Non-vibration modes (46/4%)

(d) Vibration modes (4d/4)

Figure 4 Frequency response of linearized steady-state circular turning model

at velocity: 40 km/h, roll angle:

19.7 deg.
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Figure 5 Frequency Responses of linearized full-order and 14"-order steady-state
circular turning model at velocity: 40 km/h, roll angle: 19.7 deg.

To derive a reduced-order model for designing the front-steering assist control system, the anal-
ysis is done by diagonalizing the system matrix Ai. The eigenvalues of the matrix Aiof the linea-
rized model in straight running and circular turning at the speed of 40 km/h are shown in Table
2. Figure 4 (a) and (b) show the frequency responses of the linearized circular turning model
from steering torque Azito the roll angle 46x. Figure 4 (c) and (d) also show the frequency res-
ponses from steering torque Azt to the steering angle 40.

Real values a1 and oz are the eigenvalues of capsize modes, which are related to the roll and
steering, respectively. For complex values, B1is the eigenvalue of the weave mode and B2 is the
eigenvalue of the wobble mode. It is seen from Table 2 that the vibration mode of B1is stable in
circular turning while that in straight running is stable. It is also seen that the peak of the fre-
quency responses B3 and Peare close to the weave mode Bi1. The frequency response Bsis identi-
fied as the eigenvalue of the rider’s upper torso mode [5]. The peak of the frequency responses
Baand Bsare also seen to be close to the eigenvalue of the wobble mode B2. In Figure 4 (a) and
(¢), the gain of the frequency responses Bsis small compared to a1 and a2. While the gain of the
frequency responses P2, f4and Bsare small compared to the others in Figure 4 (b), those are not
ignorable in Figure 4 (d).

From the result of frequency response analysis, ignoring the small contributors: as, a4 and asin
Table 2, 14w-order model is obtained as shown in Figure 5. The 14w-order model highly consists
of the full-order model below 20 Hz for 46x/Az, and below 300Hz for 46/4%. Without suspen-
sions, it is shown that 12w-order model is enough to express the full-order model [5]. The
12morder model does not include Pa.

3.3 The Front-Steering Assist Control System Design

Figure 6 shows the generalized plant to design Hoo control system for the reduced-order model
derived as shown in Figure 4. The feedback signal is the roll rate 46, and the output of the de-
signed controller is the steering torque Az.

Wsand Wy are given as Equation (26) and Equation (27), respectively. Wy is fixed to 1.

2
0, o
W — S ns
> §P 42,0, + 0 (26)

9.=224, @,.=361 C.=1 a,=36.1
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Figure 6 Generalized plant
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Figure 7 Bode diagram of H,, controller for linearized steady-state circular
turning model at velocity: 40 km/h, roll angle: 19.7 deg.
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The bode diagram of the H= controller designed using Ws, Wrand Whn is shown in Figure 7.

4 SIMULATIONS

It is supposed that existence of suspension in the model mainly affects the pitch motion of the
motorcycle. Thus the performance of the front-steering assist control system should be verified
when the motorcycle is in pitching motion. Figure 8 shows simulation results of the modes with
and without suspensions.
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From 2 s to 4 s, 50 Nm of the braking torque is given to the front and rear wheels. The friction
coefficient is 0.8. In this situation, except for braking time, the motorcycle velocity is controlled
12 by the PID control of the rear wheel torque. The initial velocity is 50 km/h and it decreases
to 40 km/h after braking. During simulation, the steering torque is fixed to -6.5 Nm, which gives
the roll angle 19.7 deg when the velocity is 40 km/h. Starting of braking at 2s and finishing of
braking at 4s causes the pitching motion From Figure 8 (a), it is seen that braking increases the
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roll angle from 2 s to 4 s and oppositely releasing from braking decreases the roll angle. The roll
angle of the model with suspensions varies more than that without suspensions. Figure 8 (b)
shows the model with suspensions behaves by the large pitch rate than that without suspensions.
To confirm the performance of the controller, an impulsive torque disturbance, which amplitude
is 10 Nm and its width is 0.4 s, is given around steering axis at 5.5 sec. Other conditions are the
same as the simulation shown in Figure 8. Figure 9 is the simulation result of the front-steering
assist control system. Controller A is designed for the model with suspensions, while Controller
B is designed for that without suspensions. When the impulsive disturbance is added, the roll
angle without controller is increased 6.8 deg. As shown in Figure 9 (a), Controller A reduces the
fluctuation of the roll angle 59%. Compared to Controller B, Controller A reduces the fluctua-
tion 28.6% and settles the roll angle immediately. The steering control shown in Figure 9 (b) re-
duces fluctuation of the tire slip angles as shown in Figure 9 (c). Figure 9 (d) shows the input
torque and its maximum value is -5.6 Nm.

5. CONCLUSIONS

Based on the multi-body dynamics theory, a dynamical model of the nonlinear twelve-degree
freedom rider-motorcycle system is derived and linearized for the control design. The model
consists of five rigid bodies, and includes not only the lean angle of the rider’s upper torso, but
also the front and rear suspensions. This model enables consideration of pitching motion of the
motorcycle caused by extension and compression of suspensions in braking situations. For cir-
cular turning at the velocity: 40 km/h, it is demonstrated that the front-steering assist control
system designed for the model with suspension can immediately stabilize the motorcycle post-
ure when the motorcycle behaves the pitching motion.
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