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ABSTRACT 

In this paper, a new rider-motorcycle system including front and rear suspensions is modeled 

using multi-body dynamics, and the stabilization control system is designed for the linearized 

reduced-order model. We have already modeled the rider-motorcycle system taking into account 

of the lean angle of the rider’s upper torso. The front and rear suspensions will be necessary for 

dynamical analysis of a motorcycle in braking situations. For the derived dynamical model with 

the front and rear suspensions, the front-steering assist controller is designed utilizing H∞ control. 

By carrying out simulations, the driving stability of the rider-motorcycle system with the 
front-steering assist control is investigated. 
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1 INTRODUCTION 

Recently, electric stability control systems for four-wheel vehicles are well studied. A motorcy-
cle may be required to implement one of these systems in the future. Realizing these systems 
will need not only wheel control but also stability control by front steering.  

Detail simulation models for motorcycles have been developed based on Lagrange’s equation of 
motion [1], [2], [3], and it enables simulation of motorcycle dynamics with a commercial soft-
ware. On the other hand, analyzing the dynamical system for designing a control system often 
requires an appropriate reduced-order model. We have already modeled the rider-motorcycle 
system using multi-body dynamics [4] taking into account the lean angle of the rider’s upper 
torso [5], [6]. It has been demonstrated that a front-steering assist control stabilizes the motorcy-
cle against applied impulsive disturbance on the front wheel [5], [7], [8]. For driving in a 
straight line at a low speed, references [7] and [8] have experimentally verified the stabilization 
capability of the front-steering assist control. In braking situations, the front and rear suspen-
sions will be necessary for dynamical analysis of a motorcycle. 

In this paper, a new rider-motorcycle system including front and rear suspensions [1], [2], [3] is 
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modeled. And the stabilization control system is designed for the linearized reduced-order 
model in steady-state circular turning. In particular, the driving stability of the rider-motorcycle 
system is investigated under the condition when the pitting motion is occurred due to braking. 

 

2 MODELING 

 

2.1 The Rider-Motorcycle System 

The ten-degree of freedom rider-motorcycle system [5] includes the lean motion of the rider’s 
upper torso: θwx rotating around the x-axis of the rear frame of the motorcycle, the steering an-
gle: δ and the rotation of the front and the rear wheel. In addition to them, this model includes 
the compression angle of the rear suspension: ψ and the compression length of the front suspen-
sion: lUD, which are restrained with a spring and a dumper respectively. The rider’s upper torso 
is connected to the handle with a spring and a damper. 

 

The dynamical model of the rider-motorcycle system is shown in Figure 1. It consists of five 
bodies; the rear frame (the rear frame, the rider’s lower body, the engine and the fuel tank), the 
front frame (the front fork, the steering head and the handle bars), the rear wheel, the front 
wheel and the rider’s upper torso. Table 1 shows specifications of the model [9]. The notations 
of Figure 1 are as follows; A: center of mass of the rear frame, U: center of mass of the front 
frame, C: center of mass of the rear wheel, D: center of mass of the front wheel, W: center of 
mass of the rider’s upper torso, mA: mass of the rear frame, mU: mass of the front frame, mD: 
mass of the rear wheel, mA: mass of the front wheel, mW: mass of the rider’s upper torso, Pr: 
ground contact point of rear wheel, Pf: ground contact point of front wheel, λ: caster angle, τ
rr: driving/braking torque of rear wheel, τrf: driving/braking torque of rear wheel, τrr: braking 
torque of front wheel, andτf: steering torque. The center of mass of each rigid body is defined 
as the origin of each standard coordinate system. 

The generalized coordinate and the generalized velocity are defined as 

 

     (1) 

, 

 

Figure 1. Dynamical model of rider-motorcycle system 
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Table 1. Specification of Motorcycle 
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.              

The dynamical model has twelve degrees of freedom: the position ROA of the rear frame in the 
inertia coordinate system, the Euler angles ΘOA of the rear frame, the steering angle δ, the roll 
angle of the rider’s upper torso θwx, the rotation angle of the rear wheel θrr, the rotation angle of 
the front wheel θrf, this model includes the compression angle of the rear suspension ψ, the 
compression length of the front suspension: lUD. 

Let COA be a rotation matrix that completes the rotation of a vector from the inertia coordinate 
system to the A coordinate system. Then the relationship between the derivative of the genera-
lized coordinate and the generalized velocity is given as follows 

 

.                     (2) 

 

Introducing velocity vectors: 

 

(3) 

 

and the angular velocity vectors: 

 

 

 

Mass mA mU mW mC mD 
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Spring Kwx Kwz Kcs Kds Rf 
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  [Nm/rad] [N/m] [N/m] [N/m]  
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  (4) 

 

 

 

 

the velocity matrix H is obtained with Jacobian as Equation (5). 
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2.2 Forces and Torques of the Rigid Bodies 

The forces F and the torques N to the rigid bodies are described as Equations (6) and (7) respec-
tively. 
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Figure 2 Suspension force 

 

τxp is the lean torque from the rider’s upper torso, τzp is the reaction torque of the rider’s arm 

along with z-axis of rider’s upper torso, τxa is the lean torque of the motorcycle, and τzf and τzr 

are self-aligning torque from the rear wheel and the front wheel. ~ describes the notation of a 

skew symmetric matrix for exterior product. 

FAC and FUD are interaction caused by front and rear suspensions. Figure 2 shows the displace-

ment of suspensions. The rear suspension force is assumed to be proportional to the displace-

ment of rear suspension: ΔRAC. The front suspension force FAC is simply described along with 
the z-direction of the U coordinate.  

 
(8) 

 

(9) 

 

fopr and fopf in the equation (3) are the tire forces, 

(10) 

 

where DOCxx is the unit vector of the x-direction of the rear wheel: 

 

.                        (11) 

 

In Equation (10), fcx and fcy are the longitudinal and the lateral tire force. As it discussed in 

Chapter 2, the nonlinear rider-motorcycle model has to be linearized for designing a stability 

control system. Referring to Magic Formula [3], [10], to include the nonlinear characteristics of 

tire cornering forces in the linearized model, the tire cornering forces can be expressed using 

hyperbolic tangent function [11]: 
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Figure 3 Characteristic of tire force 

 

where ε is the slip rate, aμ=25, aμ・bμ=1, ac1=16, ac1・bc1=10, ac2=1, ac2・bc2=1.6, CS11=60.64, 
CS12=4435.84, CS21=14.60, CS22=73.00, Kcz=150000, Ccz=1000. Figure 3 shows the characteris-
tic of the rear tire force given as (12) and Magic Formula. The tire forces of the front wheel are 
derived similarly. 

 

2.3 Equations of Motion 

With the velocity matrix H, the equation of motion is expressed 

(13) 

 

where MHO and FH represent the mass matrix and the force matrix: 
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Rewriting Equation (13) with the generalized velocity, the equation of motion is obtained as 
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From the equations (2) and (16), the nonlinear state-space description is represented: 

(18) 

 

where 

 

 

 

 

 

.   

 

The state vector x and the input vector u are given as 

 

.                  (19) 

 

 

 

3 ANALYSIS OF THE LINEARIZED STATE-SPACE MODEL 

 

3.1 Linearized State-Space Model 

To analyze eigenvalues and frequency responses, Equations (2) and (16), which give the nonli-

near dynamical model, are linearized around an equilibrium point [5]. When Q0 and S0 is a set 

of the equilibrium point with the generalized coordinate and generalized velocity respectively, 

Equations (1), (2) and (17) are linearized as: 
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3.2 Eigenvalue Analysis and Frequency Response Analysis 

Table 2 Eigenvalue of the system matrix (Velocity: 40 km/h) 

Roll angle 0 [deg] 19.7 [deg] 

α1 -1.20    -0.02    

α2 -1.98    -26.53    

α3 -4.11    -4.11    

α4 -12.43    -12.11    

α5 0.00    -0.50    

β1 -1.54 ± 3.87 i 0.12 ± 4.14 i 

β2 -25.49 ± 30.82 i -10.97 ± 36.58 i 

β3 -1.98 ± 7.89 i -0.27 ± 7.09 i 

β4 -7.19 ± 47.22 i -18.52 ± 45.66 i 

β5 -1.71 ± 30.43 i -2.58 ± 28.34 i 

β6     -2.55 ± 2.39 i 

 

Figure 4 Frequency response of linearized steady-state circular turning model 

at velocity: 40 km/h, roll angle: 19.7 deg. 
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Figure 5 Frequency Responses of linearized full-order and 14
th

-order steady-state   

circular turning model at velocity: 40 km/h, roll angle: 19.7 deg. 

 

To derive a reduced-order model for designing the front-steering assist control system, the anal-

ysis is done by diagonalizing the system matrix Al. The eigenvalues of the matrix Al of the linea-

rized model in straight running and circular turning at the speed of 40 km/h are shown in Table 

2. Figure 4 (a) and (b) show the frequency responses of the linearized circular turning model 

from steering torque Δτf to the roll angle Δθx. Figure 4 (c) and (d) also show the frequency res-

ponses from steering torque Δτf to the steering angle Δδ.  

Real values α1 and α2 are the eigenvalues of capsize modes, which are related to the roll and 

steering, respectively. For complex values, β1 is the eigenvalue of the weave mode and β2 is the 

eigenvalue of the wobble mode. It is seen from Table 2 that the vibration mode of β1 is stable in 

circular turning while that in straight running is stable. It is also seen that the peak of the fre-

quency responses β3 and β6 are close to the weave mode β1. The frequency response β3 is identi-

fied as the eigenvalue of the rider’s upper torso mode [5]. The peak of the frequency responses 

β4 and β5 are also seen to be close to the eigenvalue of the wobble mode β2. In Figure 4 (a) and 

(c), the gain of the frequency responses β3 is small compared to α1 and α2. While the gain of the 

frequency responses β2, β4 and β5 are small compared to the others in Figure 4 (b), those are not 

ignorable in Figure 4 (d). 

From the result of frequency response analysis, ignoring the small contributors: α3, α4 and α5 in 

Table 2, 14th-order model is obtained as shown in Figure 5. The 14th-order model highly consists 

of the full-order model below 20 Hz for Δθx/Δτf , and below 300Hz for Δδ/Δτf. Without suspen-

sions, it is shown that 12th-order model is enough to express the full-order model [5]. The 

12thorder model does not include β4. 

 
3.3 The Front-Steering Assist Control System Design 

Figure 6 shows the generalized plant to design H∞ control system for the reduced-order model 

derived as shown in Figure 4. The feedback signal is the roll rate Δθx and the output of the de-

signed controller is the steering torque Δτfc. 
WS and WT are given as Equation (26) and Equation (27), respectively. WN is fixed to 1. 
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Figure 6 Generalized plant 

 

 

Figure 7 Bode diagram of H∞ controller for linearized steady-state circular 

turning model at velocity: 40 km/h, roll angle: 19.7 deg. 

 

 

(27) 

 

The bode diagram of the H∞ controller designed using WS, WT and WN is shown in Figure 7. 

 

4 SIMULATIONS 

It is supposed that existence of suspension in the model mainly affects the pitch motion of the 

motorcycle. Thus the performance of the front-steering assist control system should be verified 

when the motorcycle is in pitching motion. Figure 8 shows simulation results of the modes with 

and without suspensions. 
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Figure 8 Effects of suspensions in simulations 

 

Figure 9 Performance of the Front Steering Assist Control 

 
From 2 s to 4 s, 50 Nm of the braking torque is given to the front and rear wheels. The friction 

coefficient is 0.8. In this situation, except for braking time, the motorcycle velocity is controlled 

12 by the PID control of the rear wheel torque. The initial velocity is 50 km/h and it decreases 

to 40 km/h after braking. During simulation, the steering torque is fixed to -6.5 Nm, which gives 

the roll angle 19.7 deg when the velocity is 40 km/h. Starting of braking at 2s and finishing of 

braking at 4s causes the pitching motion From Figure 8 (a), it is seen that braking increases the 
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roll angle from 2 s to 4 s and oppositely releasing from braking decreases the roll angle. The roll 

angle of the model with suspensions varies more than that without suspensions. Figure 8 (b) 

shows the model with suspensions behaves by the large pitch rate than that without suspensions. 

To confirm the performance of the controller, an impulsive torque disturbance, which amplitude 

is 10 Nm and its width is 0.4 s, is given around steering axis at 5.5 sec. Other conditions are the 

same as the simulation shown in Figure 8. Figure 9 is the simulation result of the front-steering 

assist control system. Controller A is designed for the model with suspensions, while Controller 

B is designed for that without suspensions. When the impulsive disturbance is added, the roll 

angle without controller is increased 6.8 deg. As shown in Figure 9 (a), Controller A reduces the 

fluctuation of the roll angle 59%. Compared to Controller B, Controller A reduces the fluctua-

tion 28.6% and settles the roll angle immediately. The steering control shown in Figure 9 (b) re-

duces fluctuation of the tire slip angles as shown in Figure 9 (c). Figure 9 (d) shows the input 

torque and its maximum value is -5.6 Nm. 

 

5. CONCLUSIONS 

Based on the multi-body dynamics theory, a dynamical model of the nonlinear twelve-degree 

freedom rider-motorcycle system is derived and linearized for the control design. The model 

consists of five rigid bodies, and includes not only the lean angle of the rider’s upper torso, but 

also the front and rear suspensions. This model enables consideration of pitching motion of the 

motorcycle caused by extension and compression of suspensions in braking situations. For cir-

cular turning at the velocity: 40 km/h, it is demonstrated that the front-steering assist control 

system designed for the model with suspension can immediately stabilize the motorcycle post-

ure when the motorcycle behaves the pitching motion. 
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