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ABSTRACT 

This paper describes the use of a bicycle model to teach machine dynamics. The bicycle 

equations of motion are first obtained as a DAE system written in terms of dependent 

coordinates that are subject to holonomic and non-holonomic constraints. The equations are 

obtained using symbolic computation. The DAE system is transformed to ODE system written 

in terms of a minimum set of independent coordinates using the generalized coordinates 

partitioning method. This step is taken using numeric computation. The ODE system in then 

linearized about the upright position and eigenvalue analysis of the resulting system is 

performed. The frequencies and modes of the bicycle are obtained as a function of the forward 

velocity which is used as continuation parameter. The resulting frequencies and modes are 

compared with experimental results. Finally, the non-linear equations of the bicycle are used to 

create an interactive real-time simulator using Matlab-Simulik. Some issues about controlling 

the bicycle are discussed. All the paper is focused on teaching engineering students the practical 

application of analytical and computational mechanics using a model that being simple is 

familiar and attractive to them. 

 

Keywords:  education of machine dynamics, symbolic computation, real-time simulator. 

 

1 INTRODUCTION 

A bicycle Whipple model is an excellent example to teach machine dynamics to engineering 

students. The model can be used from intermediate level to high level courses. This model 

allows students to better understand analytical dynamics of constrained mechanical systems as 

well as computational techniques with a system that is familiar to them. The bicycle model 

while being simple contains a large variety of ingredients that make it very attractive for 

teaching purposes. This model let students to enjoy a subject (Machine Dynamics) that may 

result difficult to understand and separated from reality in a first approach. In what follows it is 

explained the mechanical properties of the bicycle model under an analytical point of view and 

the ideas that students can learn with it. 

The bicycle model is described with a set of 9 coordinates that must fulfil all kind of kinematic 

constraint equations: 

o Holonomic and non-holonomic constraints. 
o Scleronomic and rehonomic constraints. 
o Joint, contact and driving constraints. 
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The definition of contact constrain equations requires the use of a geometric parameter to define 

the position of the wheel contact point with the ground. This parameter is a non-generalized 

coordinate of the system since no inertia is associated with it. Therefore the bicycle model 

includes: 

o Dependent generalized coordinates. 
o Non-generalized coordinates. 

The equations of motion of the system are obtained in this work using Lagrange equations. Due 

to the existence of non-holonomic constraints and the use of dependent coordinates, Lagrange 

equations of the first kind that include Lagrange multipliers to account for reaction forces are 

needed. Due to this fact the resulting equations of motion are differential-algebraic equations 

(DAE). Although the dimension of the problem is not large (9 coordinates) pencil and paper 

calculations of the equations of motion is prohibitive. In this work the DAE equations of motion 

are obtained using computer symbolic calculation.  

Although multibody dynamic techniques allow the use of the DAE equations of motion for 

linearization and eigenvalue analysis [1] it is more appropriate to transform first the DAE 

system to ordinary differential equations (ODE) with which the students are more familiar. This 

transformation is done in this paper by the generalized coordinate decomposition method [2] 

that transforms the equations to a new set written in terms of independent coordinates and 

eliminates the Lagrange multipliers from the system. This transformation of the system 

equations from ODE to DAE can no longer be done symbolically because of the nature of the 

algebraic manipulations involved. Therefore the transformation of the equations is done 

numerically and the rest of analyses that follow are also performed numerically. Students can 

understand also the difference between numerical and symbolic computer calculations. 

Once the equations are written in ODE form in terms of independent coordinates, the equations 

are linearized around the equilibrium position, being such a position in this case the upright 

position although circular trajectories can also be selected. After linearization an eigenvalue 

analysis of the system is performed using the bicycle forward velocity as continuation 

parameter. The regions of stability are identified. The stable region of the continuation plot is 

experimentally verified using the method described in [3]. 

The bicycle non-linear DAE equations of motion can be integrated numerically forward in time. 

The symbolic computations performed are well suited for real-time simulation allowing 

developing an interactive simulator. The simulator uses peripherals such joysticks used in 

computer games to virtually riding the bicycle. However, the input signal that can be used to 

control the bicycle is not trivial. Different possibilities are discussed although the control input 

remains an open problem.  

2 KINEMATICS 

This section explains the coordinates selected to describe the bicycle and the constraints that 

they must fulfil due to kinematic joints, wheel-ground contact and forward velocity. 

2.1 Coordinates Selection 

Figure 1 shows a drawing of the bicycle in an arbitrary position. The bicycle is made of 4 rigid 

moving bodies. Solid 2 is the rear wheel, solid 3 is the frame, solid 4 is the handlebar and solid 

5 is the front wheel. 
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Frame <X Y Z> is the global-inertial frame of reference to which the position and orientation of 

all moving bodies are refered. Frames <xi1 y i1 z i1> and <x i2 y i2 z i2> are intermediate frames 

needed to define the plane that contains the bicycle frame. Finally, each moving body has its 

own body frame <xi yi zi >, i = 2, 3, 4 and 5, as shown in the figure.  

 

Figure 1. Bicycle in arbitrary position 

The coordinates used to describe the position and orientation of the bicycle are:  

1. Coordinates xC and yC of the real Wheel contact point C de in plane <X Y> of the global 
frame. In this work it is assumed that the bicycle advance in a flat plane with no 

inclination. 

2. The heading angle (yaw) ϕ that form the axis xi1 of the first intermediate frame with 
axis X of the global frame. 

3. The lean angle (roll) θ that forms axis zi2 of the second intermediate frame with axis zi1 
of the first intermediate frame. Angles ϕ and θ determine the orientation of the plane 
that contains the frame of the bicycle. 

4. The rolling angle (pitch) ψ that forms axis z2 of the rear wheel with axis zi2 of the 
second intermediate frame. 

5. Angle β that forms axis z3 with axis z i2 of the second intermediate frame. 

6. The steering angle γ that forms axis x4 with axis x3. 

7. The rolling angle (pitch) ε that forms axis z5 with axis z4. 

Finally, the coordinate set is grouped in the following vector: 

[ ]TCC yx εγβψθϕ=q                                         (1) 
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2.2 Velocities and angular velocities 

In this section it is shown that the absolute velocity of the centre of gravity and the angular 

velocities of the bodies of the bicycle can be written in terms of the coordinate vector q and its 

time derivative q& as follows: 

( ) ( )qqGωqqHv &&
iii

Gi
==     ,                                             (2) 

where matrices 
iH and 

i
G are functions of the position of the system. In what follows the 

calculation of these matrices for the rear wheel (body 2) is given as an example.  

The position of the centre of gravity of the rear wheel is given by: 
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and the velocity of the centre of gravity of the rear wheel is obtained as: 
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where matrix 
2H is given by: 
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For the symbolic calculation of matrices 
iH it is interesting to note that this matrix is the 

jacobian of the position of the centre of gravity Gir with respect to vector q, this is
q

r
H

∂

∂
= iGi

. 

The angular velocity of the rear wheel is obtained as: 

qGjikω &&&&
2212 =++= ii ψθϕ                                                   (5) 

where  
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where [ ]ij
A  represents the i column of the orientation matrix 

jA . Accordingly, the angular 

velocity in the body frame can be obtained as follows: 

 qGjikω &&&&
2212 =++= ii ψθϕ                                                      (7) 
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where matrix 
2

G , that is also a function of q, is given by: 
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2.3 Constraints 

The selected coordinates are not independent. They must fulfil a set of kinematic constraints. 

There are three types of constraints in this system: 

1. Contact constraints. They guarantee that the front wheel has a contact point in the 

horizontal plane (due to the selected coordinates, contact constraints are not needed for 

the rear wheel). These contraints are scleronomic, because time does not appear 

explicitly, and holonomic, because generalized velocities do not appear. 

2. Rolling-without-sliding constraints. These constraints guarantee that both wheels roll 

without sliding. These constrains are non-holonomic becacuse they are functions of q 

and q& .  

3. Driving constraints. This constraint guarantees the forward motion of the bicycle. It is 

assumed that the time derivative of ψ is constant, this is, coordinateψ changes linearly 
with time. This is a rehonomic constraint because time appears explicitly. 

The explicit form of the constraints is now given. Figure 2 shows two solids in (non-

conformal) contact. This situation requires the vector of coordinates to fulfil two kind of 

constraints: 

1. One point of solid i, the contact point P, is located in the same spatial position than 
other point of solid j. 

2. The tangent plane to solid i at P has to be parallel to the tangent plane to solid j at P. 

 

 

Figure 2. Solids in contact 

The position of an arbitrary point of the front wheel is obtained in the body frame as:  

[ ] [ ]πξξξ 20     ,sen0cos
5 ∈−=

T

P RRr                                 (9) 

where ξ is a geometric angular parameter. The tangent vector to the wheel at P in the 
body frame is obtained as: 
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The position and tangent vectors in the global frame are given by: 

( ) ( ) [ ]πξξξ 20     ,   , 5555
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In this particular case, in which the body in contact can be described by a line instead of a curve, 

the contact constrains are given by: 
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where D is the contact point at the front Wheel and ξD is the angular parameter associated with 

it. The two equations given in (12) are written in terms of vector q and the geometric parameter 

ξD that cannot be eliminated. That is why the contact constraints reduces one degree of freedom 

of the system (two equations an one new coordinate, 2 - 1 = 1). Therefore the new non-

generalized coordinate ξ (for simplicity subscript D is eliminated in what follows) is introduced. 
The new vector of coordinates p is given by: 

[ ] [ ]TCC

TT yx ξεγβψθϕξ == qp                      (13) 

Rolling-without-sliding constraints guarantee that the velocity of contact points of the wheels is 

zero. In the case of the rear wheel this velocity is given by: 
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That can be reduced to: 
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which can be written in the following matrix form: 
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where matrix 
2B can be obtained as the jacobian 
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These equations can also be written as: 
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Finally the rolling-without-sliding constraints are given by: 
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The forward motion of the bicycle is imposed with the following driving constraint: 

  ( ) 0,0 =⇒=− tt
R

V mov
qCψ ,                                           (21) 

where V and R are the forward velocity of the bicycle and radius of the rear wheel, respectively.  

The total set of constraint can be given with the vector: 
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The kinematic description of the bicycle requires n = 9 coordintates (8 in vector q plus 

parameter ξ) subjected to m = 7 constraints (2 contact constraints, 4 rolling-without-sliding 
constraints and 1 mobility constraint). Therefore, the bicycle has n – m = 2 degrees of freedom. 

3 DYNAMICS 

The equations of motion of the system are obtained using Lagrange equations of the 1
st
 kind. 

These equations are given by: 
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where T is the kinetic energy, λλλλ is the vector of multipliers, gravQ is the vector of generalized 

gravity forces and extQ  is the vector of generalized external forces. Matrix D is given by: 
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where , ,   , movconi

i

i =
∂
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=

p

C
Cp  (jacobian of the holonomic constrains) and B is given in Eq. 

(20). Equation 23 is a system of differential-algebraic equations (DAE). This is the kind of 

equations of motion that appear in multibody dynamics [4]. 

3.1 Kinetic Energy 

The kinetic energy of the bicycle is given by: 
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where 
im and 

iI are the mass and the inertia tensor of solid i, respectively. Introducing Eq. (2) 
into (25) yields  
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The kinetic energy can be written in compact form as: 
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where the velocity-dependent mass matrix M is given by: 
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3.2 Inertia forces 

The two first terms of the equations of motion (23) represent the inertia forces. They are given 

by: 
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These forces are the inertia forces that are proportional to the system accelerations ( pM && ) plus 

the inertia forces that are quadratic with respect to the system velocities Qv (centrifugal and 

Coriolis forces). The quadratic-velocity inertia terms are given by 
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3.3 Generalized gravity forces 

In order to obtain the vecotr Qgrav in Eq. (23) the virtual power of the gravity forces is 

calculated: 
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where [ ]  ,00
T
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i gm−=P  is the weight of solid i and superscripts ‘*’ means virtual 

magnitude. Vector Qgrav yields: 
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The equations of motion finally take the form: 
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4 EQUATIONS IN TERMS OF INDEPENDENT COORDINATES (DAE TO ODE) 

The generalized coordinate partitioning method is now used to transform equations (33) to a 

ODE system written in terms of independent coordinates. The time derivative of the holonomic 

constraints together with the non-holonomic constraints represent a linear system of equations 

with respect to the system coordinates, as follows: 
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where matrix D was defined in Eq. (24) and tC  is the partial derivative of the constraint 

equations with respect to time. Vector p is divided into independent coordinates pi, that contains 

the coordinates θ and γ , and the vector of dependent coordinates pd, that contains all other 

coordinates in the system. Equations (34) can be written in the form: 
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Dependent velocities can be obtained as a function of the dependent velocities as follows: 
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Therefore the system velocities can be obtained from the independent velocities as follows: 
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where matrix E and vector F depend on the system coordinates and time. The system 

accelerations are obtained from the time derivative of Eq. (37): 

JpEFpEpEp +=++= iii
&&&&&&&&&                                             (38) 

where FpEJ &&& += i
. Substituting (38) in the equations of motion and pre-multiplying by E

T
 

yields: 
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It can be easily shown that the product 
TTDE is zero. This property makes the Lagrange 

multipliers vector λλλλ (reaction forces) to disappear from the new equations of motion. The new 
equations of motion yield: 
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Calling MEEM
T

i =  to the mass matrix in terms of the independent coordinates and 

( )MJQQQEQ −++= extgravv

T

i  to the vector of applied forces yields: 

iii QpM =&&                                                            (41) 

Equation (41) is a minimal set of ordinary differential equations. The system (33) is a set of n + 

m = 9 + 7 = 16 equations while the system (41) is a set of n – m = 2 equations of a simpler 

nature (ODE instead of DAE). However, it is important to notice that matrix iM depends on the 

complete vector p and vector iQ is a function of p and p& . Therefore, the numerical solution of 
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(41) requires the solution of the non-linear constraint equations and their derivatives each time 

step. This step is not needed when solving the DAE system (33). 

5 LINEARIZATION AND EIGENVALUE ANALYSIS AND STABILITY 

Equations (41) can be linearized in the vicinity of a steady motion of the bicycle. In the uprigth 

position the generalized independent coordinates take the value θ = 0 and γ = 0. Due to the 
forward velocity constraint V the system generalized velocities take the value 

RVRV /  ,/ −=== ξεψ &&& . The values of coordinates xc, yc, ϕ, ψ and ε is irrelevant since they 

do not appear in the equations of motions. These coordinates are considered as ignorable. For 

linearization they can be considered as null. The upright steady motion of the bicycle is 

characterized by the following set of coordinates, velocities and accelerations:  
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where βstd and ξstd are obtained when solving the contact constraints. The linearized equations of 

motion are given by: 

  0pKpCpM =++ iii
&&& ,                                                   (43) 

where the mass matrix M , gyroscopic matrix C  and stiffness matrix K  are constants and 

given by: 
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Once the equations (43) are obtained, the eigenvalue analysis is performed using the usual 

method for linear discrete system with non-proportional damping [Meirovitch] (complex 

modes). Equations (43) can be written in first order form, as follows:  
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                           (45) 

The eigenvalues and eigenvectors of matrix A characterize the bicycle dynamics for small 

motions around the steady motion considered. The eigenvalue analysis is performed as follows: 
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where iλ  (frequencies and damping) are the eigenvalues and iΦ  the eigenvectors (modes of 

vibration) of the bicycle. 
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6 SOLUTION PROCEDURE 

The dynamics analysis presented in this paper has been implemented in Matlab using a 

combination of symbolic (up to Eq. (33)) and numerical computations. The transformation of 

the DAE system to ODE cannot be performed symbolically. The system parameters are those 

given in the benchmark presented in [5]. 

Figure 3 shows the four eigenvalues of the bicycle as a function of the forward velocity for a 

range between 0 and 10 m/s. For V between 0 and 0.6 m/s all eigenvalues are real, two positive 

and two negative valued. The bicycle is unstable. For V between 0.6 and 4.2 m/s two 

eigenvalues are negative and there are two complex conjugate eigenvalues with positive real 

part. The system is unstable but having an oscillatory behaviour. The dashed line shows the 

frequency of oscillation (imaginary part). For V between 4.2 and 6.8 m/s the real part of the 

complex conjugate eigenvalues is negative and the system becomes stable. Above 6.8 m/s there 

is a positive eigenvalue. Therefore the system turns unstable.  

 

Figura 3. Bicycle eigenvalues as a function of the forward velocity 

The bicycle is intrinsically stable only in the range between 4.2 and 6.8 m/s. Experience shows 

that the bicycle is unstable at low velocities. However, experience does not show instability at 

large velocities. The reason is that the real part of the eigenvalue associated with the unstable 

mode is very small. This means that the dynamics is very slow and the rider has plenty of time 

to stabilize the system by applying the necessary forces. It is important to notice that in the 

presented analysis the effect (control) of the rider has not been considered.   

7 REAL-TIME INTERACTIVE SIMULATOR 

The equations of motion of the bicycle are written in terms of generalized force vectors whose 

analytic expressions are known thanks to the symbolic computations. This property makes the 

numerical integration of the equations very efficient. The equations can be integrated into a real-

time simulator that includes the signal from peripherals to virtually ride the bicycle. This section 

shows the implementation of the simulator and different alternatives for the bicycle control. 

In the simulator the driving constraint ( ) 0, =tmov
qC has been removed in order to accelerate 

and brake the bicycle. Therefore, the new model has n – m = 9 – 6 = 3 degrees of freedom. 
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7.1 Numerical integration 

The numerical integration of the equations of motion follows the method described in [6]. The 

equations of motion of the bicycle are transformed into first order differential equations of the 

form: 

( )t,yfy =& ,                                                                    (47) 

To this end, the coordinates vector is first divided into three groups, as follows: 

[ ]
[ ] [ ] [ ]Tdep

T

cckin

T

din

TT

dep

T

kin

T

din

yx ξβεϕψγθ ===

=

ppp

pppp

    ,
                       (48) 

and the vector of variables y is given by 

[ ]Tdinkindin pppy &= ,                                                       (49) 

The calculation of y& as a function of y and time t (implementation of function f given in Eq. 

47) requires the following steps: 

1. Calculation of vector depp by solving the two nonlinear contact constraint equations 

( ) 0=pC
con . 

2. Calculation of the system 6 velocities included in depp& and kinp& by solving the linear 

algebraic equations 0pCp =&con
 (time derivative of the contact constraints) together with 

0pB =&  (non-holonomic constraints). 

3. Calculation of the terms of the DAE system (33) using symbolic expressions. 

4. Transformation of the DAE system (33) to the ODE system (41) as described in Section 

4. Notice that dinp  takes de roll of the vector of independent coordinates ip in Eq. (41) 

but including the angle ψ. [ ]Tdinkindin pppy &&&&& =  

5. Calculation of the system accelerations dinp&& by solving Eq. 41. Vector of derivatives 

[ ]Tdinkindin pppy &&&&& = is now fully known. 

7.2 Control Inputs 

The real-time simulator includes a number of input signals to ride the bicycle. The equations of 

motion are transformed to 

 ( )t,,uyfy =& ,                                                                    (50) 

where u is the vector of input signals. The bicycle control requires one input signal for the 

driving torque Mψ (motor or braking torque) one signal for steering. The steering signal can be 

solved in two different ways: 

1. Using the coordinate γ (angle of the steering bar) as input signal. In this case angle γ is 
treated as a guided coordinate and the system looses one degree of freedom. 

2. Using a torque Mγ applied to the steering bar. 

The two steering methods present problems in practise. Guiding angle γ directly does not work. 

The bicycle shows completely unpredictable motion. One physical reason and one mathematical 

reason can explain this fact. Physically, it is well known that in order to ride the bicycle one 
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must not hold the steering bar too tightly. The handle bar must be free to adopt the angular 

position required by the system dynamics. Guiding the angle γ goes against this rule. The 

mathematical reason is that the system is unable to fulfil the rolling-without-sliding constraint at 

the front wheel at the time that it shows a natural motion. 

Using a torque Mγ applied to the steering bar does not produce so bad results. When this method 

is implemented the simulator works and the bicycle shows what seems a natural behaviour. 

However the steering is unnatural. Assume that the peripheral used to control the bicycle looks 

like a steering bar and the input signal is proportional to the angle rotated by the steering bar. 

This is unnatural because the steering simply does not work like this. One can negotiate a curve 

adopting a non-zero angle γ while applying a zero torque Mγ. Actually this situation occurs in 

the hands-free steady curving of the bicycle. The use of torque Mγ as input signal shows that the 

implemented equations of motion correctly represent the bicycle dynamics because of the 

counter-steering phenomenon. The simulator shows that when the bicycle is doing a straight 

trajectory a short application of a torque Mγ to the right produces a final turn of the bicycle to 

the left. 

In order to implement a different method to steer the bicycle, the upper body of the rider has 

been introduced into the system as a new solid. The motion of this new solid is described by the 

lean angle of the upper body η. However, this coordinate does not introduce a new degree of 

freedom because it is treated as a guided coordinate. Therefore, a third method is analysed to 

steer the bicycle: 

3. Using the coordinate η (lean angle of the upper body) as input signal.  

The control of the bicycle with this method provides relatively satisfactory results. The bicycle 

behaves as being driven by a rider with no hands at the steering bar. One can control the bicycle 

trajectory if no tight curves have to be negotiated.  
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