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ABSTRACT 

For a motorcycle simulator the development of a real time bicycle/motorcycle model with a 
compact formulation of the dynamic behaviour is required. The modeling environment MatLab 
SimMechanics was posed as a prerequisite. No suitable tyre model is available in the library of 
this software, the tyre model has been developed using linear tyre slip characteristics, and point 
contact of knife-edged wheels with the ground. The simulation in simmechanics of a single 
wheel with this tyre model stresses the importance of the propagation speed of the tyre contact 
point. Two wheels have been assembled with two frame bodies to build the Wipple bicycle in 
SimMechanics. The simulation model has been validated against the bicycle benchmark using 
eigenvalue analysis. The eigenvalues of SimMechanics model were obtained from curve fitting 
a (complex-) exponential function to a time response from simulation. The match is remarkable 
despite of the tyre models included in the simulation model. 
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1 INTRODUCTION 

Recently the use of simulators has become increasingly popular. The vehicle motion is repli-
cated by a motion (stewart-) platform, and the scenery is visualized on screens connected to the 
cockpit. The application area of these simulators is quickly expanding from airplane pilot train-
ing to race driver training and even game-arcades. The industrial partner in this research, Cru-
den considers the development of a motorcycle simulator. For a motorcycle simulator the devel-
opment of a real time bicycle/motorcycle model with a compact formulation of the dynamic 
behaviour is required. The modeling environment MatLab SimMechanics was posed as a prereq-
uisite.  

2 WHEEL MODEL 

From the SimMechanics library Body element has been used as the basis for the wheel module. 
Though some examples of rolling spheres are present in the examples library, no real wheels 
with non-holonomic constraints were made available. In the future application of a real time bi-
cycle or motorcycle model eventually the tyre slip angle will play a role as force generating in-
put to the tyre model, so we immediately start modeling non-perfect rolling.  
For the development of the tyre model the wheel was considered as a disc with knife edge con-
tact to the ground. A tyre model typically uses slip quantities as the input and calculates forces 
and moments as outputs. Longitudinal- and lateral slip are calculated as the components of a 
normalized slip velocity in the contact point. The location of this contact point can be denoted 
with a position vector r pointing from the wheel disc centre to the contact point.  
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The assessment of the slip quantities has been based entirely on the vector calculation presented 
by Pacejka in [1] the contact point can be found in radial direction er at a scalar distance r from 
the wheel centre. Here er is recursively defined as being orthogonal to the axial es and longitudi-
nal direction el, where the longitudinal direction is the intersection of the road plane and wheel 
plane, thus the vector orthogonal to road normal n and axle direction es. See Figure 1 
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Figure 1. The wheel disc with contact point location r 

 
The contact point relative position vector results from the following equations. By taking the 
cross product of the rotated wheel axle es and road normal n one gets the longitudinal vector, l: 

 
s= ×l n e  (1) 

el denotes the orthonormal (orthogonal and unit length) vector in longitudinal direction. 

 l =
le
l  (2) 

Using the cross product of the road normal and longitudinal vector l results in the lateral direc-
tion t . The angle between longitudinal and normal is and thus the result of their cross 
product is automatically unit length.   

e
e 90°

 
t l= ×e n e  

In order to calculate the wheel radial direction er, the cross product of the longitudinal and cur-
rent wheel axle vector is used. The wheel radial direction is multiplied with the sca-
lar length r to provide the radius vector r: 

r l= ×e e es

 ( )l sr ×r = e e  (3) 

Where r denotes the position vector of the contac point c from wheel centre, and r is the scalar 
distance from the wheel centre to the point of contact. The global position of contactpoint c can 
now be found from the position of the wheel center x, and r. the difference between the road 
coordinate and contact point position can be projected on the normal direction. This is a meas-
ure of the tyre deformation, and allows calculation of the normal load.  Assuming for conven-
ience that the road surface is a plane through (0,0,0) we find: 

 ( )ad = + ⋅x r n  (4) 

With the motion of the centre of the wheel disc and the vector r available, the derivation of the 
velocity of the material point s on the wheel, momentarily in the contact point c, is straightfor-
ward: 
 

s a= + ×v v rω  (5) 



A linear spring-damper can now be used to calculate the force in vertical (normal to the road) 
direction. The velocity of the point s needs to be normalized with the wheel speed vx, to obtain 
the slip quantities α and κ that are the inputs for the tyre horizontal force model.  

 λ , tan ,s
y

xv
= α = −λ κ = −λ

v
x  (6) 

A simple linear tyre model defines the dissipative tyre contact forces, proportional to the estab-
lished slip quantities.  

 x FF C
κ

= κ , y FF C
α

= α  

However normalizing slip with the wheel-centre longitudinal velocity vx→va,x is practical, but 
incorrect. We show that the singularity caused by dividing by zero axle speed, poses difficulties 
for the numerical solvers when simulating the wheel as an Euler disc. The behaviour of an Euler 
disc, in practice comparable to a spinning coin on a tabletop, has many instances where the cen-
tre of gravity has momentarily zero speed while the disc is still rolling. Dividing by near-zero 
speed causes the dynamics to stiffen progressively, causing poor numerical performance of the 
solver.  
The correct velocity to use in the normalization of slip is the propagation speed of the contact 
point vc,x, which comprises va,x and a term with . Since r is the result of sequential cross prod-
ucts, its time derivation is awkward, yet possible.  

r

2.1 The propagation speed vcx 

Figure 2 illustrates the difference between the longitudinal velocity of the contact point and the 
velocity of the centre of gravity. Clearly this difference is small for wheels small camber or yaw 
rate. The combination of both variables is exaggerated in the example of the Euler disc motion, 
that serves as the test scenario for the development of a single wheel model. 

 
Figure 2 The wheel disc under camber angle γ, illustration of the difference between the path of c and 
of the wheel centre a 

When the global position of c is given by c a= +x x r and the velocity of the wheel body 
a a can be obtained from the SimMechanics environment, we now concentrate on the deri-

vation of r : 
=x v

 ( )l s l sr= × + ×r e e e e  (7) 

Equation (7) show that for the radial direction time derivative re the derivative of the longitudi-
nal direction vector is needed. This vector is the result of a cross product itself and it is im-le

3 
 



 
 

4 
 

portant to notice that this vector has been normalized to give the vector unit length. Knowing 
that es and n are both unit length, we can write sin= θl  where θ is the smallest angle between 
the vectors of the road-normal vector and wheel-axle. The normalization is time dependent since 
the camber angle varies. Note that .  90θ + γ = °

 sinl = =
θ

l le
l  (8) 

With (8) we find for :  le

 
2

sin cos cot
sin sinl
θ − θθ

= = − l θθ
θ θ

l l le e  (9) 

In expression (7) se is required; the time derivative of the rotated wheel axle, its calculation 
evolves similar to the time derivative of a position vector connected to the wheel body. 

 s s= ×e ω e  (10)  

This result leads to the following l : 

 ( )s s= × + × ×l n e n ω e  (11) 

For the second term in equation (11) we can use the vector ‘triple product’:  

 ( ) ( ) ( )× × = ⋅ − ⋅a b c b a c c a b    (12) 

That transforms (11) into: 

 ( ) ( )s s s= × + ⋅ − ⋅l n e ω n e e n ω   (13) 

And finally l substituted in (9) leads to: 

 

( ) ( )( )
cot

sin
s s s

l

× + ⋅ − ⋅
=

θ

n e ω n e e n ω
e l− θθe  (14) 

Now found from 0e (10)  can be substituted in  

 ( )r l s l s= × + × ×e e e e ω e   (15) 

Substitution of (14) in (15) an using the general relation (12) for the triple product results in
 ( ) ( )( )

2

sin cos
sin sin sin

s s s
s s sr

⎧ ⎫× + ⋅ − ⋅ θ − θθ⎪ ⎪⎛ ⎞ ⎛= × +⎨ ⎬⎜ ⎟ ⎜θ θ⎝ ⎠ ⎝⎪ ⎪⎩ ⎭

n e ω n e e n ω l l lr e ω e e ω ⎞⋅ − ⋅ ⎟θ ⎠
  

Since we are interested in the propagation speed vcx, which has its contribution in the longitudi-
nal direction, the derivative of the wheel radius vector has to be projected onto the longitudinal 
vector.  

( ) ( )
21

43
5

cos
sin sin sin

s s s

l s l s sr

⎡ ⎤⎧ ⎫⎛ ⎞
⎢ ⎥⎪ ⎪⎜ ⎟× + ⋅ − ⋅ ⎛ ⎞⎢ ⎥⎪ ⎪⎜ ⎟ ⎜ ⎟⎪ ⎪⎛ ⎞⎝ ⎠⎢ ⎥⋅ = × − θθ × + ⋅ − ⋅ ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥θ θ ⎝ ⎠⎪ ⎪⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

n e ω n e e n ω
l lr e e e e ω e e ω es lθ

(16) 

In order to simplify the above equation we can use some vector relations and general properties.  
1. The derivative of n on flat level roads is zero: erasing s×n e  
2. 0  therefore we lose term 2 in s s×e e (16) 



3. 4.  The dot product of two orthogonal vectors is always zero: 0l s⋅ , which allows 
to erase 3 and 4.   

e e

5. ( )cot cot 0l s l r lθθ × ⋅ = θθ ⋅ =e e e e e   
Finally we can assemble the correct propagation speed to calculate the slip ratios 

 
( ) ( ) ( )cos sin
sin sin

s
l s l s lr s l

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ θ γ
⋅ = × ⋅ = × ⋅ = × ⋅⎢ ⎥⎜⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜θ θ

⎟⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ω n e ω ω
r e e e e e e e

l
 (17) 

All variables in (17) are eiter well defined, or can be extracted from de body module in sim me-
chanics by means of a sensor block.  
The lateral slip or slipangle α is defined as the ratio of lateral slip speed vsx and the forward 
speed vcx of the tyre contact point. Similarly for longitudinal slip κ: 

 tan ,sy sx

cx cx

v v
v v
− −

α = κ = −
+ ε + ε

 (18) 

The calculations presented will be included in the simulation environment by plane simulink 
modelling. Figure 3 shows three successive snapshots of the simulated single wheel motion, 
when it has a low speed and behaves as the Euler disc. In Figure 4 the longitudinal velocity of 
the centre of gravity is presented in the left axis and the propagation velocity of the contact 
point is presented in the right axis. The single wheel has been further elaborated by including re-
laxation behaviour for both longitudinal and lateral slip. The relaxation behaviour substitutes 
equation (18) as the slip definition, and allow simulation at zero speed, without the need for in-
troducing ε to prevent singularity. For the relaxation equations we refer to [1] and [3]. The full 
wheel model in Simulink is given by a snapshot in the appendix 

 
Figure 3 Three successive snapshots of the SimMechanics visualisation of the single wheel simulated as 
Euler disc.  

 

 
Figure 4 Velocity as a function of time. Simulated with a initial forward velocity of 0.62 [m/s] centre of 
mass a and contact point c respectively.  
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It is important to mention that the angle-coordinates that SimMechanics uses depend on the type 
of constraint that is selected to connect to the body. The generic ‘custom joint’ allows all de-
grees of freedom to be specified by the user in the GUI presented by Figure 5. The default choice 
suggested is assigning Euler angles in xyz sequence. In vehicle dynamics the vehicle typically 
drives in x direction thus the wheels experience large angles about the y axis. The xyz sequence 
of Euler angles should be avoided at all cost, the Euler angles experience so called gimball-lock 
after a wheel rotantion of 90°. After discovering this we use zxy as the order of Euler angles, or 
even better use the ‘six-DOF’ constraint that assigns quarternion coordinates to the wheel-body    
 

  
Figure 5 The SimMechanics graphical interface (GUI) that allows custom degrees of freedom to be as-
signed to the body 

3 BICYCLE MODEL  

In this section the benchmark bicycle is introduced though it has been taken from the literature 
[2] in subsection 3.1, then the SimMechanics model is explained in subsection 3.2. The results 
are resented by some time response plot. Time response generated at various velocities and with 
saddle and steer excitation have been post-processed to create eigenvalue versus speed diagram. 
Both types of results are presented in subsection 3.3  

3.1 The bicycle benchmark 
The so called Whiple bicycle is the most basic mechanical model of a bicycle is described in 
[2]. The model consists of four rigid bodies, i.e. the rear frame with the rider body rigidly at-
tached to it, the front frame being the front fork, the front an rear wheels. Due to its validate 
equations and standardised parameterset from [2] it serves as the benchmark to verify and vali-
date the SimMechanics model. 
 



 
Figure 6: The ‘Whipple’ or benchmark bicycle, picture taken from [2]   

The bicycle benchmark is fully characterized by 25 parameters. Most numerical values 
are representative for real bicycles. The eigenvalues of the uncontrolled bicycle and their corre-
sponding eigenvectors allows the analysis of the bicycle dynamics.  
 

 
Figure 7: Eigenvaluesλ from the linearized stability analysis for the benchmark bicycle The solid lines 
correspond to the real part of the eigenvalues and the dashed line corresponds to the imaginary part of the 
eigenvalues, in the forward speed range of 0≤v≤10 m/s . graph taken from [2] 

At low speeds, starting at zero, the eigenvalues come in two positive and negative pairs and rep-
resent the instability of an inverted pendulum. At sufficiently higher speed, the two positive real 
eigenvalues commonly merge to form a complex conjugate pair with positive real parts. This 
represents unstable oscillatory motion and is referred to as the weave mode. The bicycle leans 
and steers from side to side. As forward speed increases, the frequency of this weave increases, 
as is indicated by the increasing magnitude of the imaginary parts of the complex conjugate ei-
genvalues. This increase in magnitude becomes nearly linear with the increase in forward speed, 
and so the wavelength of the weave is nearly constant.  
At even higher speeds this pair crosses the real axis and the weave motion becomes stable. This 
is the beginning of the range of forward speeds for which the bicycle is self-stable. The smallest 
of the two initially-negative eigenvalues corresponds to the capsize mode. it becomes positive 
(unstable) at a speed above the weave speed, marking the end of the self-stable range of speeds. 
Finally, the eigenvalue initially most negative has an eigenvector dominated by steer rate and 
represents the castor mode: the tendency of the front wheel to steer in the direction the bicycle is 
moving. It becomes more stable as forward speed increases. 
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3.2 SimMechanics model 
In SimMechanics the bicycle has been modelled by assembling a main frame body, wich in-
cludes the rigid rider to a front fork body by a revolute joint. Both frame parts contain a wheel 
that again is connected to the frame by revolute joints that represent the wheel axles. The newly 
developed tyre model interfaces with the wheel body using a sensor and actuator connection. A 
coarse impression of the model is given in Figure 8     
After the bicycle model was build a few simulations were performed. However regardless the 
initial speed or perturbing force the bicycle became instantly unstable. At first we thought the 
error could be found in a misinterpretation of a sign convention of the front and rear wheel. e.g. 
introducing a plus in the rear wheel and a correct minus sign in the front wheel configuration, 
could result in a self exciter of the rear end. But this was not the case. Since the error could not 
be found in the bicycle configuration or parameters, it was presumably caused in the tyre model.  

 
Figure 8  Overview of the SimMechanics model structure with its four bodies as red blocks, 
the interconnecting revolute joints presented as blue blocks, and a dedicated front and rear 
wheel module.    
For single wheel simulations initially a rotational damper (around the z-axis) was build in the 
wheel to increase the energy dissipation in the tyre. The single wheel shows the tendency to 
perpetual behaviour. Removal of this damping was the key to a successful simulation.  
Another possibility is the use of a damper in combination with a spring, in other words ad an-
other relaxation system, Just as it has been used for the longitudinal and lateral force. Refer to 
[3],[4] for the relaxation model for turnslip. 

3.3 Bicycle simulations 
The variables that we wanted to measure for an adequate validation areδ the steer angle, δ  the 
steer angle rate, γ  the lean (roll) angle,γ  the lean (roll) angle rate, and v the forward speed 
(which would range from 0 to 10 m/s). With these variables we could then compare the meas-
ured values to the calculated values. Below four characteristic speeds are discussed in more de-
tail. In each case the lean and steer rate is shown, since the lean rate was a very compact figure 
and needed some up scaling.  
 
First the unstable weave speed is taken followed by the stable weave. 
 



 
Figure 9 Bicycle lean versus time Figure 10 Bicycle steer rate versus time 
at an unstable weave velocity v=4.0 [m/s].  at an unstable weave velocity v=4.0 [m/s] 
 
Figure 9 and versus timeFigure 10 represents the unstable oscillatory motion and is referred to 
as the weave mode. The bicycle leans and steers from side to side. The increasing (undamped 
behaviour) for lean and steer are in accordance with the linearized benchmark model since this 
speed is located in the unstable speed region.  
 

 
Figure 11 Bicycle lean versus time Figure 12 Bicycle steer rate versus time 
at a stable weave velocity v=4.5 [m/s].  at a stable weave velocity v=4.5 [m/s]. 
 
Figure 11 shows a simulation of the weave speed at approximately 4.5 m/s. After the perturbing 
force the bicycle shows a slightly damped oscillatory behaviour. The same holds for the steer 
rate. As this typically speed is located in the stable speed region of the bicycle this oscillatory 
behaviour will damp out. 
Since we had limited confidence in the automated linearization within SimMechanics especially 
in including the negative stiffness generated by gravity, we perform time simulations, the be-
haviour of the bicycle is disturbed by a pulse like force or torque. The response of the lean angle 
and steer angle rate have been postprocessed to extract the eigen values: The standard (com-
plex)exponential function was fitted with a least squares optimization to the simulation data, af-
ter a suitable segment of measurement data has been selected. An example is the black box of 
Figure 6. More details on the identification procedure can be found in [5] 

 1
0 1 2

ty C C e C e 2tλ λ= + +  (19) 

In Figure 13 the identified eigenvalues have been plotted against the velocity, in the same fash-
ion as the literature reference [2] shows. The open circles are the result of identification of the 
complex exponential function on the simulated time response obtained from the simmechanics 
model. The bicycle behaviour that has been excited by a saddle force pulse is represented with 
black circles. The higly damped weave mode has been excited with a steer torque pulse, the 
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identified imaginary part of the eigenvalue is plotted with red circles. The linear benchmark 
model results in eigenvalues that are represented with solid dots.  
The result is very convincing, most circles coincide with the dots. Despite the presence of a tyre 
model with the associated slip and dissipation the uncontrolled bicycle dynamics as still very 
similar to the benchmark bicycle with the perfect rolling (no-slip) wheels. The velocity was in-
creased with 1 ms-1 steps. The speed where stable behaviour is first found was found by manual 
iteration with the SimMechanics model. The bounds found for the stable speed range: 4.3 ms-1 
and 6.0 ms-1 match the benchmark model up to three digits. The difference can be increased 
when other bicycle tyre parameters are included. Preferably the new values should be supported 
by measurements on bicycle tyres.  
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Figure 13 The eigenvalue versus speed for both benchmark bicycle and the SimMechanics  

4 CONCLUSIONS 

A linear tyre model has been developed in SimMechanics environment, The tyre model directly 
connects to the Wheel body. A single wheel can be successfully simulated, up to extreme cam-
ber angles resembling the behaviour of an Euler disc. There is no need for a wheel carrier body. 
Simulating a single wheel stresses the importance of the determination of the propagation speed 
of the tyre contact point, which is awkward, yet possible. The definition of the angle coordinates 
of a single body with six degrees of freedom requires caution in assigning the Euler angle se-
quence. SimMechanics presents xyz sequence as default, while zxy should be used.  
By connecting two wheels to a front-fork and a rear-frame bodies with revolute joints one easily 
builds a Wipple bicycle. The behaviour of the SimMechanics model was validated against the 
bicycle benchmark.  Despite the presence of a tyre model with the associated slip and dissipa-
tion the uncontrolled bicycle dynamics as still very similar to the benchmark bicycle with the 
perfect rolling (no-slip) wheels. Introducing of spin-damping/friction leads to instability unless 
compliance is added with a relaxation equation. 
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