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ABSTRACT 

In this study, a genetic-fuzzy control system is used to control a riderless bicycle where control 

parameters can adapt to the speed change of the bicycle. The equations of motion of a bicycle 

with constraints of rolling-without-slipping contact condition between wheels and ground are 

developed. This controller consists of two loops: the inner is a roll-angle-tracking controller 

which generates steering torque, and the outer is a path-following controller which generates the 

reference roll angle for the inner loop. The inner loop is controlled by a sliding-mode controller 

(SMC) on the basis of a linear model obtained from the non-linear one via system identification. 

By defining a stable sliding surface of error dynamics and an appropriate Lyapunov function, 

the bicycle can reach the roll-angle reference in a finite time and follow that reference without 

chattering. The outer loop determines the proper reference roll-angle by using a fuzzy-logic con-

troller (FLC) on the basis of preview distance and direction errors. The robustness of the pro-

posed controller against speed change and external disturbances is verified by simulations. 
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1 INTRODUCTION 

Since bicycle dynamics is a classical topic in mechanics, much research has been devoted to 

methods for controlling bicycles. To understand the nature of the dynamics and steering mecha-

nisms of bicycles, Jones [1] conducted a number of investigations. He pointed out that, to bal-

ance a manned bicycle, a sufficient centrifugal force can be generated to correct its fall by steer-

ing the fork into the direction of the fall. This theory was well formalised mathematically by 

Bouasse [2], later replicated by Timoshenko and Young [3] and is repeatedly confirmed in 

common bicycle-riding experience. 

Schwab, Meijaard et al. [4][5] developed linearised equations of motion for a bicycle as a 

benchmark. In their study, the numerical multibody dynamics program SPACAR and the sym-

bolic software AutoSim®, were compared for validation. Extended equations were later given 

by Meijaard and Schwab [6], and also further discussed by Sharp [7], including acceleration ef-

fects, finite cross-section tires, tire forces and dynamics, as well as both frame and rider compli-

ances. 

As an unstable and underactuated system, the bicycle is control-challenging; thus, it can offer a 

number of research possibilities in the area of mechanics and robot control. Control efforts for 

stabilising unmanned bicycles have also been addressed in previous studies. Yavin [8] dealt 

with the stabilisation and control of an unmanned bicycle by both a pedalling and a directional 

torque, as well as a rotor mounted on the crossbar that generated a tilting torque. Beznos et al. 
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[9] modelled a bicycle with gyroscopes that enabled the vehicle to stabilise itself in autonomous 

motions along both a straight line and a curve. In their study, the stabilisation unit consisted of 

two coupled gyroscopes spinning in opposite directions. Han et al. [10] derived a simple kine-

matic and dynamic formulation of an unmanned electric bicycle. The controllability of the stabi-

lisation problem was also verified and a control algorithm for self-stabilisation of the vehicle 

with a bounded wheel speed and steering angle, by using a nonlinear control based on a sliding 

patch and stuck phenomena, was proposed. 

Getz [11] applied internal equilibrium control to the problem of path-following with balance for 

a bicycle. From the internal dynamics of the bicycle, an internal equilibrium manifold, a sub-

manifold of the state-space, was constructed. Among studies pertaining to two-wheeled-vehicle 

control, Sharp et al. [12] presented a related work on the roll-angle-tracking of motorcycles. A 

PID controller was used to generate the steering torque on the basis of the tracking error. The 

PID gains were variant related to the speed of the motorcycle, making the controller adaptive to 

the speed change. In other studies, Sharp applied an optimal linear preview control theory to the 

steering control of a bicycle [7] via the benchmark model developed in [4] and [5] with exten-

sions discussed in the same paper. The same theory was applied to a motorcycle [13] via a linear 

model generated by AutoSim®. 

In previous studies of Chen et al. [14][15][16], a diversity of works has been introduced relative 

to the dynamics and control of an unmanned bicycle. When changing the direction of a bicycle, 

the rider must always control the roll angle. This implies that the roll-angle control is a prelimi-

nary step for developing the turning or path-tracking controllers [15]. The roll-angle-tracking 

control structures presented in [14] and [16], which are based on fuzzy-logic controllers (FLCs), 

demonstrated that the bicycle could follow the roll-angle command with only a small tracking 

error. However, these control structures are model-free and the fuzzy control parameters are 

sensitive to speed change. The control parameters tuned for a certain speed may not be used to 

properly control the bicycle at another speed. 

In this study, a control structure using sliding mode control (SMC) is designed to address this 

problem. With the information of the system model, this controller design would be more accu-

rate and robust to the effects of parameter variation and disturbance. First, an approach using 

system identification techniques is applied to determine a linear model from the input-output 

data of the nonlinear bicycle model at a specific speed. The bicycle dynamic model described in 

a previous study [14] is used with configuration parameters adopted from the benchmark bicy-

cle [5]. The input steering torque signal and output data, including roll and steering angles, are 

generated from a roll-angle control simulation via a simple PD controller; however, the control 

performance is not an issue in this phase. In this way, a speed-specific linear model can be ob-

tained. From the linear model, a roll-angle controller is designed by using sliding mode control. 

The control simulations demonstrated that the controller can control the bicycle with a small 

tracking error and robustness against speed variations, as well as external disturbances. 

The remainder of this paper is organised as follows. In Section 2, the nonlinear bicycle model is 

briefly reviewed. In Section 3, the system identification method, the sliding-mode control proc-

ess for the roll-angle tracking, and the path-tracking controller with preview and disturbance re-

jection are explained. The identified results for different speeds and control results are presented 

and discussed in Section 4. Finally, concluding remarks are given in Section 5. 

 

2 BICYCLE MODEL 

2.1 Nonlinear model 

In this study, the bicycle model with nine generalised coordinates and two algebraic variables, 

presented in [14] and [15] (Figure 1), is used. The dynamics of the bicycle are described by the 

motion of a reference point c. Six coordinates are used to designate the positions and orienta-

tions of the body at point c. The other three coordinate variables are the steering angle  , and 

the rotating angles r  and f  of the rear and front wheels. According to the foregoing defini-

tions, the generalised coordinates q  can be written as 
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 [ ]T

r fX Y Z      q , (1) 

where  , ,X Y Z  are the position parameters and  , ,    are the three 3-2-1 Euler angles 

describing the relative orientation of the bicycle body and the inertia coordinate frame;  , the 

steering angle; r  and f , the rotating angles of the rear and front wheels, respectively. The 

velocity vector is written as 

 
T

x y z x y z r fv v v         u , (2) 

first six components of which are the quasi-velocities of the bicycle body in body coordinates. 

For the motion of the wheels, point-contact and rolling-without-slipping conditions are consid-

ered by described by constraint equations. 

The development of equations of motion and constraints is accomplished by programming in 

the symbolic computational package Maple®. These equations are optimised for numerical 

computation and subsequently exported to C language for compilation as an S-function to be 

used within MATLAB/Simulink®. The complete procedure for the development of the dynamic 

equations is presented in [14] and [15]. 

b

a

e

f

d

c

D

B A

F

'o s

ax

ex

fx

dx

az

bz

ez


rr

bx

fr

dz

fz

ck

ci

ei

ek

o

c

e

ci
cj

ck

ei

ej ek

I

J

K

'o

B b

a

A

c

e

s

o




F f

d

D

ck
rR

r
fR

f

ek

(a)

(b)
 

Figure 1. Schematic of bicycle model. 

 

2.2 Linearised model 

The speed-dependent benchmark model introduced by Schwab et al. [4] was derived from 

Whipple’s linear model [17] with several assumptions, including small roll, yaw and steering 

angles. Schwab also assumed that the ratio between lateral velocity Py  of the rear contact 
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point and longitudinal speed v  is so small that /y v  can be approximated by the yaw angle 

 . By these assumptions, the original nonlinear model can be linearised as 

  2

1 0 2v g v   Mq C q K K q f , (3) 

where [ ,  ]T q  is the vector composed of the roll and steering angles, respectively; 

[0,  ]Tf , the force vector consisting of the steering torque  ; v, the bicycle forward speed; 

g, the gravity; and M , 1C , 0K  and 2K , the bicycle-dependant constant coefficient matrices. 

Due to the aforementioned assumptions and the system order reduction on which this linearisa-

tion approach is based, certain dynamic properties may be lost. Furthermore, although parame-

ters M , 1C , 0K  and 2K  are constant coefficient matrices, they are dependent on the physi-

cal characteristics of the bicycle and, hence, not so straightforward to measure. This dependence 

can be a source of uncertainties in the mathematical model as well. For these reasons, system 

identification is applied in this study to determine the parameters of the linear model at a spe-

cific speed. 

 

3 CONTROL DESIGN 

3.1 System-identification approach 

The identification of a dynamic system is achieved by the extraction of its mathematical model 

from the input and output measurements. System identification is a broad topic which appears in 

almost all areas of control and modelling theory. Many identification methods have been pro-

posed on the basis of the characteristics of the models to be estimated, such as linear or nonlin-

ear, time or frequency domain, and parametric or nonparametric. In this study, a prediction-error 

method [18] is used to identify the bicycle state-space model in canonical form. 

First, equation (3) can be rewritten as 

  1 2 1

1 0 2v g v      
 

q M C q K K q M f . (4) 

By choosing the state vector as 

 [ ,  ,  ,  ]T   x , (5) 

the state-space model can be expressed in canonical form as 

 
,
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
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i i

i

i

v i
a

v i

 



  
 


 (7) 

where i  and i  are constants dependent on M , 1C , 0K  and 2K ; and 1,2ib   are con-

stants dependent on M . From equation (7), a bicycle running at a constant speed can be mod-

eled as equation (6), with constant matrices A and B. Therefore, in the following system identi-

fication process, model (6) is used since the bicycle is identified at a constant speed. 
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Figure 2. System-identification schematic. 

 

Canonical parameterisation represents a state-space system in its minimal form; that is, the sys-

tem dynamics are expressed by using a minimal number of free parameters. In system (6), the 

free parameters 1..8 1,2

T

i ia b 
   θ  appear in only the second and fourth rows in the system 

matrices A  and B , and the remaining matrix elements are fixed to either zeros or ones. By 

this parameterisation, the numerical Gauss-Newton method can be used to search for the opti-

mal parameters which minimise the error in the least-squares sense defined by 

 
2

1

( ) ( ) ( )
n

i

E i i


  θθ y y , (8) 

where ( )iy  is the ith original output data sample; ( )iθy , the estimated ith output sample from 

the simulated model using parameters θ  with the original input data; n , the number of data 

samples; and • , the vector norm. The initial parameter values 0θ  required in the Gauss-

Newton method can be estimated by using subspace methods [18]. This estimation procedure 

was implemented by the PEM function of MATLAB. 

The identification process is schematised in Figure 2. To identify the model given by (6), or 

more specifically, matrices A  and B , at a given speed, the time history of the input steering 

torque   and the corresponding outputs composed of   and   must be generated. How-

ever, as the bicycle can be unstable at certain speeds, a roll-angle controller is necessary to pro-

duce sufficiently long simulations. The controller can be of any type, such as PID or fuzzy 

[15][16]; moreover, the accuracy of the control is not an important issue since the only require-

ment is to prevent falls during these simulations to ensure that sufficient input-output data are 

obtained. Nevertheless, as the input-output identification data are obtained from closed-loop 

simulations, the input signal (steering torque) may not be sufficiently persistently exciting. To 

reinforce the excitation of the identification data, random signals are generated and added to the 

input torque. The identified linear model can then be verified by comparing the output responses 

of the linear and nonlinear systems by feeding the same control torque into both systems. 

 

3.2 Roll-angle tracking control by sliding-mode control 

Sliding-mode control (SMC), as depicted in Figure 3, is a powerful approach to controlling 

nonlinear and uncertain systems. It is a robust control method which can be applied to the case 

with the presence of bounded model uncertainties and parameter disturbances. As Whipple’s bi-

cycle model is speed-varying, SMC can be applied to overcome the speed-dependant modelling 

errors. Consider the linear model in (6) and let ref     be the roll-angle tracking error, 

where ref  is the roll-angle reference. 
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Figure 3. Sliding-mode controller (SMC) structure. 

 

In this study, the sliding surface is defined as a plane of two states:  , the roll-angle tracking 

error, and  , its derivative, corresponding to an exponentially stable first-order LTI system 

 0s     , (9) 

where   is a strictly positive constant. A Lyapunov function V is defined as 21

2
V s . The de-

rived control law guarantees that V is always decreasing, or mathematically 0V ss  . To ver-

ify this condition, the control   must be chosen so that s  and s  have opposite signs. From 

the time derivative of  (9), one can have 

 refs          . (10) 

Substituting   extracted from (6) into (10) gives 

  2 2 refs b      A x , (11) 

where 2A  is the second row of matrix A , i.e., 2 1 2 3 4[ ]a a a aA . By letting 0s  , the 

equivalent control can be obtained as 

 2 ref

2

1
eq

b
      

  
A x . (12) 

Consider the control law 

 sgn( )eq k s   , (13) 

where k  is a controller gain. It can be proven that (13) satisfies the condition 0ss   by sub-

stituting (12) into (13), which gives 

 2 sgn( ).s b k s   (14) 

However, it can be remarked that (13) is not continuous when s  switches from negative to 

positive or vice versa. When the system states are at the neighborhood of the sliding surface, 

this lack of continuity makes the system chattering. Therefore, the sign function is replaced by 

the saturation function to make the control law continuous when s  is around zero, and the 

control law becomes 

 sat( / )eq k s    , (15) 

where 0   is the thickness of the boundary layer bordering the sliding surface which is in-

troduced to avoid chattering; and sat( , )s  , the saturation function defined as 

 

1,       ,

sat( , ) / , ,

1,    .

s

s s s

s

 


     
  

 (16) 

By appropriately choosing the control parameters  , k  and  , the bicycle can reach the 

roll-angle reference in a finite time and follow that reference without chattering. A detail discus-

sion of the SMC used for roll-angle-tracking control can be found in [16]. 
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3.3 Path-following control with preview 

For path-tracking control in this study, the goal is to minimise the distance error Le  and the di-

rection error e , as shown in Figure 4. In real riding experience, the human rider usually looks 

forward at a preview point ahead on the direction that the motorcycle is moving. Normally, the 

distance of preview depends on the speed. If the speed is lower, the preview point would be 

nearer; if the speed is higher, the preview point would be farther accordingly. In this study, the 

preview distance is related to the speed by a simplified relation: 

 pre prexL v T   (17) 

where preL  is the preview distance and preT , the preview time. The crosspoint of the lateral 

axis from the preview point and the target path is called target point. The preview distance error 

Le  is the distance from the preview point to the target point. When the target path is on the 

right side of the bicycle, Le  is positive and vice versa. The preview direction error e  is the 

angular difference between the motorcycle yaw angle and the direction of the target path at the 

preview point. 
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Figure 4. Error estimation for path-tracking control with path preview. 
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Figure 5. Path-tracking controller with disturbance rejection. 

 

The path-tracking controller structure is presented in Figure 5. Unlike the path-tracking control 

of four-wheeled and three-wheeled vehicles, the control of single-track vehicles is more chal-

lenging. For a four-wheeled or three-wheeled vehicle, only the planar motion information, posi-

tion and orientation, is needed to perform the path-tracking control, while for a single-track one 

such as a motorcycle, the roll stability must be additionally taken into consideration. In this 

study, the path-tracking control is proposed by generating an appropriate reference roll angle for 
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the roll-angle controller in the inner loop, which the stability problem is solved as presented in 

the previous subsection. 

Another control loop is added to the existing roll-angle tracking controller. This control loop 

uses a fuzzy controller whose inputs are Le  and e . From the planned path and the current po-

sition of the bicycle, the distance error Le  and the direction error e  are estimated. The two 

errors are passed through an FLC to generate target roll angle ref , which is then fed to the roll-

angle-tracking controller discussed in the previous chapter. Linguistic quantification used to 

specify a set of rules for the new controller is characterized by the following typical situations: 

(1) If Le  is -6 and e  is -6, then ref  is 0 

This rule quantifies the situation wherein the target path is on the left side of the bicycle and the 

angular difference is negative large. In this situation, we need not do anything since we want the 

bicycle to run quickly to the target path. 

(2) If Le  is 0 and e  is 0, then ref  is 0 

This rule quantifies the situation wherein the bicycle is already in its proper position. No control 

effort is needed. 

(3) If Le  is 6 and e  is 6, then ref  is 0 

In this case, one need not do anything for the same reason stated in the first situation. 

(4) If Le  is 6 and e  is -6, then ref  is 6 

This rule quantifies the situation wherein the target path is on the right side of the bicycle and 

the bicycle is heading to the wrong side. Therefore, one needs to lean the bicycle to the right at a 

large angle. 

In a similar fashion, the complete rule-base is constructed as listed in Table 1, where the mem-

bership functions -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 are used for the fuzzy variables, as shown 

in Figure 6. Notice that the body of the table lists the linguistic-numeric consequents of the 

rules, and the left column and top row of the table contain the linguistic-numeric premise terms. 

For this controller, with two inputs and seven linguistic values for each of these, there are totally 
213 169  rules. 

 

Table 1. Fuzzy rule base for path-tracking control with Le  and e  as inputs. 
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Figure 6. Fuzzy membership functions for path-tracking control. 

 

To overcome the parameter variation due to the speed change of the bicycle, the gain-

scheduling technique used in the study of Sharp et al. [12] for roll-angle control is reused, 

wherein the speed-dependent PID gains are replaced by speed-dependent scaling factors 1,2k . 

As the membership functions are normalized to [ 1,  1] , 3k  represents the maximum absolute 

value of the generated reference roll angle, hence fixed to 60 degrees. In the study of Sharp et 

al., each of the PID gains depends on the vehicle speed by a polynomial relation. This intro-

duces a set of subjacent parameters to the controller. The advantage of using PID is its simplic-

ity; however, one of the difficulties in implementation of their controller is the choice of the 

speed-dependent parameters. Moreover, in this study, in order to attenuate the effect of external 

disturbances on the system, an integral term is added as the third term. 

In this study, by profiting the property of the bicycle that it normally runs at a smaller range of 

speed in comparison with the motorcycle. The bicycle speed is supposed to be variable in the 

range from 5 to 30km/h; however, it could be extended without difficulty. This range is divided 

into many levels with the increment of 1km/h to tune the SFs. In order to make the controller be 

speed-adaptive, the DCs and SFs 1,2k  are first tuned for a speed of 15km/h, then the member-

ship functions are fixed and only the SFs are tuned for all the other speed levels from 5 to 

30km/h, also by using genetic algorithms (GAs). After running the GAs, the optimal SFs are 

collected to establish two fitting polynomials which are functions of the bicycle speed. 

For the path-tracking control, the goal is to minimize simultaneously the tracking error L  and 

its oscillation. Therefore, the fitness function used for optimization is defined as 

 

11 2 22
* 2 *

1 1

1 1 ( )
 ( )

N N

e e

i i

L i
fitness value L i

N N T
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 

    
           

  , (18) 

where ( ) ( ) ( 1)L i L i L i     is the change in tracking error at time step i. The fitness function 

is the aggregation of two terms. The first is the root mean square of the tracking error multiplied 

by a weighting factor *

e , and the second is the root mean square of the change in roll angle 

multiplied by a weighting factor *

e . 

 

4 SIMULATION RESULTS 
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4.1 Model identification 

For the simulations in this study, the parameters are derived from the benchmark bicycle pro-

posed in [5] and listed in Table 2. During the system identification process, the bicycle is con-

trolled to follow a sinusoidal roll-angle with increasing frequency, by using a PD controller, the 

parameters of which are 88Pk   and 30Dk  . Uniformly-distributed pseudo-random number 

signals with an amplitude smaller than 1Nm are generated and added to the input steering torque 

to make the input signal persistently exciting. Figure 7 graphs the identification data from a 

simulation with an initial forward speed of 15km/s and a time step of 0.01s. This data is then en-

tered in the PEM function of MATLAB to identify the continuous canonical state-space model. 

This procedure results in 

 

0 1 0 0

5.342 0.406 12.349 3.149
,

0 0 0 1

13.042 21.024 22.374 16.840

0

19.709 1 0 0 0
, and .

0 0 0 1 0

233.608

 
 

  
 
 
 

 

 
 
         
 
 

A

B C

 (19) 

 
Table 2. Simulation parameters derived from [5]. 

(a) 

Name Value Name Value 

am  85 (kg) bm  2 (kg) 

dm  3 (kg) fm  4 (kg) 

aρ  (0.5351, 0, 0.1275) (m) bρ  (–0.3649, 0, 0.5275) (m) 

dρ  (0.0321, 0, 0.5887) (m) eρ  (0.4427, 0, –0.0725) (m) 

fρ  (0.0261, 0, 0.2188) (m)   18° 

fr  0.35 (m) rr  0.3 (m) 

g  9.81 (m/s2)   

(b) 

Component Moment of inertia (kg.m2) 

Vehicle body 

9.2 0 2.4

11 0

2.8

A

 
 


 
  

I  

Front fork 

0.05892 0 0.00756

0.06 0

0.00708

F

 
 


 
  

I  

Wheels 

0.0603 0 0

0.12 0

0.0603

B

 
 


 
  

I , 

0.1405 0 0

0.28 0

0.1405

D

 
 


 
  

I  
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Figure 7. Identification data for simulation and verification at a speed of 15km/s. 

 

The four poles calculated from A  are 15.041, 1.657 and 0.274 3.344 j    . The obtained 

linear model is then used in an open-loop steering simulation by entering the original steering 

torque for verification. The results graphed in Figure 7 show that the output roll and steering 

angles follow the original data with only minor errors. Note that in this figure, the thin lines 

(identified model outputs) coincide within the thick ones (identification data) because of small 

model errors. The largest errors in the total 50s simulation time are 0.230° for the roll angle and 

0.145° for the steering angle. This comparison verifies the fitting accuracy of the identified 

model. 

 

4.2 Roll-angle-tracking control 

In this study, the bicycle is con ppt.pptx trolled to follow a sinusoidal reference roll angle with a 

time period of 4 seconds and an amplitude of 10°. The control simulation is implemented by us-

ing MATLAB/Simulink, wherein the nonlinear model is programmed in a C-language S-

function. In the identified model in (19), 

  2 5.342 0.406 12.349 3.149   A  and 2 19.709b   , (20) 

the control parameters of which are 100k   , 50   and 50  . Figure 8 shows the con-

trol performance at a constant speed of 15km/h from the SMC controller and the corresponding 

steering torque. It appears that the controller can control the nonlinear model with small roll-

angle tracking errors. After a transient time of nearly 0.2 seconds, the tracking error becomes 

stable with a maximal error of 0.005°. It can also be observed that the peak value of the steering 

torque generated by the SMC is 1.387Nm. 
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Figure 8. Roll-angle control performance at a speed of 15km/h. 

 

Since the control parameters are designed on the basis of the model at a speed of 15km/h, the 

performance of the controller will degrade when the bicycle speed is changed. To evaluate the 

robustness due to speed change, the roll-angle tracking errors from the same control parameters 

are presented in Figure 9, depicting changes in speed to 5, 30 and 50km/h. It appears that for the 

SMC, with the parameters designed the model at the speed 15km/h, the maximal tracking error 

increases to only 0.041° for 30km/h, 0.052° for 50km/h and 0.057° for 5km/h, thus demonstrat-

ing that the designed SMC can control the bicycle in a wide range of speeds without a need for 

changing the control parameters. Note that because the linear bicycle model identified speed is 

15km/h was used to design the SMC controller, the bicycle can be controlled more accurately at 

15km/h than at other speeds. With a smaller tracking error, the controller generates a smaller 

torque. However, at higher or lower speeds, due to the model error, larger tracking errors are 

generated and thus, also larger control torque induced from the control law. 

In Figure 10, the same roll-angle profile is used as a reference for control. However, a simple 

speed controller is used in the meantime to control the speed from 5 to 30km/h in 5 seconds and 

back to 5km/h, also in 5 seconds. It appears that with the PID, the tracking error of the SMC is 

kept at less than 0.2°, thereby demonstrating that the SMC is robust against speed variation. 

In Figure 11, the bicycle is controlled at the original speed of 15km/h but in the presence of an 

external disturbance. This disturbance is injected as a lateral force from the left, applied to the 

bicycle body at reference point c in the direction of cj , at different magnitudes of 100, 200 and 

300N from the 3rd to the 7th seconds. It can be observed that the behaviour of the bicycle is per-

turbed, whereby the tracking error increases proportionally to the magnitude of the disturbance. 

However, the disturbance has very small effects on the tracking error. For the disturbance of 

300N, the tracking error is smaller than 0.3°. It can also be noticed that after the disturbance is 

released, the tracking error converges very quickly, after only 0.15 seconds. 
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Figure 9. Control performance of SMC at different speeds. 
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Figure 10. Control performance of SMC at varying speed. 
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Figure 11. Control performance at a speed of 15km/h in presence of disturbance. 

 

 

4.3 Path-tracking control 

A simulation is carried out with the above controller, where the parameters are optimized using 

GAs at a speed 15km/h (see Figure 12), to control the bicycle model following a sinusoidal 

curve defined by the equation 2.5sin(2 / 50)Y X  and the initial lateral position of the bicy-

cle is 2m. The weighting factors for optimization are chosen as * 0.8e   and * 0.2e  . The 

optimized parameters are given in Table 3. 

It is observed that, for lower speeds, smaller tracking error is achieved but the oscillation is 

more significant during the transient time, and vice versa for higher speeds. Therefore, the 

weighting factors are chosen as * 0.2e   and * 0.8e   for the speeds below 10km/h so that 

the oscillation has more importance on the fitness function; and as * 0.8e   and * 0.2e   for 

the speeds starting from 10km/h so that the tracking error has more importance on the fitness 

function. The fuzzy SFs for the path-tracking controller collected from running GAs are pre-

sented are shown in Figure 13. The obtained SFs are then used to establish the fitting curves 

with the following equations 

 
5 4 3 3 2

1

6 4 4 3 2

2

( ) 2.01 10 1.55 10 0.04 0.34 1.23,

( ) 9.77 10 7.4 10 0.021 0.28 2.12,

B x x x x x

B x x x x x

k v v v v v

k v v v v v

 

 

      

      
 (21) 

where xv  is valued in km/h. After establishing the fitting curves for 1k  and 2k , simulations 

with varying speed was carried out. The speed is controlled by a simple PID controller to follow 

a reference command composed of two ramp-function pieces of the longitudinal position. First, 

the speed is controlled to increase from 5 at the initial position to 30km/h at a longitudinal posi-

tion of 50m, then decrease back to 5km/h at the longitudinal position of 100m. In the meantime, 
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the bicycle was controlled to follow the same target path. As shown in Figure 14, the absolute 

value of the tracking error is kept under 0.08m in this simulation. 

To investigate the effect of external disturbances on the bicycle, the bicycle model is controlled 

to follow the designed target path at a speed of 10km/h, but in the presence of an external dis-

turbance, and the control performance presented in Figure 15. This disturbance is injected as a 

lateral force of 200N from the left, applied to the bicycle body at reference point c  in the di-

rection of cj , in a range of longitudinal position from 20m to 60m. It can be observed that dur-

ing the presence of the disturbance, the system dynamics perturbed and the tracking error is 

shifted to the same direction of the disturbance with a steady-stead value of nearly 0.8m. After 

the disturbance is released, the behaviour of the bicycle is restored quickly with the help of the 

path-tracking controller. 
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Figure 12. Path-tracking control at a speed of 15km/h and a preview time of 0.5 seconds. 

 
Table 3. Optimized parameters for the path-tracking controller at a speed of 15km/h. 

 

Fuzzy variable DC SF 

Input Le  0.476 0.984 

Input Le  0.653 0.367 

Output ref  0.391 60 

Fitness value 0.0261 

 

This phenomenon can be explained as follows. When the disturbance appears, the roll-angle-

tracking controller tries to balance the bicycle. Since the disturbance has direction from left to 

right, the bicycle is leaned more to the left so that the gravity can balance with the disturbance 

(unlike in a roll-angle-tracking control where the bicycle trajectory is not of interest and the bal-

ance is fulfilled with help of the centrifugal force caused by a steering angle). This can be ob-

served from Figure 15 by the fact that the roll angle is reduced by about 8 degrees during the 
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presence of the disturbance. When the disturbance is released, the equilibrium point is also re-

stored. 

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

v
x
 (km/h)

 

 

k
1

k
2

fitting curve for k
1

fitting curve for k
2

 
Figure 13. Speed-dependent fuzzy SFs and fitness values for path-tracking control. 
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Figure 14. Path-tracking control at varying speed. 
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Figure 15. Path-tracking control in presence of disturbance at a speed of 10km/h. 
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Figure 16. Path-tracking control with disturbance rejection at a speed of 10km/h. 

 

This problem can be solved by adding an integrator and an adjustable gain Ik  between the 

preview distance error Le  and the reference roll angle. Simulations with this controller (also at 

a speed of 10km/h) are shown in Figure 16, where the value of Ik  is 15. As soon as the distur-

bance is applied, the tracking error increases. However, by the effect of the integrator, an addi-

tional term is added to the reference roll angle, helping the bicycle to be pulled back to the di-

rection making the tracking error reduced. When the disturbance is released and the equilibrium 
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point changes, a similar process also happens, however, in the inverse direction. The overshoot 

is about 0.3m, and the transient longitudinal distance is about 7m. The control gain Ik  can be 

used to adjust the balance between the overshoot and the transient time. 

 

5 CONCLUSIONS 

In this study, system identification has been applied to identify the linear model from a devel-

oped nonlinear bicycle model at a speed of 15km/h. Subsequently, SMC was used to design a 

roll-angle-tracking controller based on the identified linear model. The robustness of the con-

troller was evaluated by control simulations with different schemes. Without changing the con-

trol parameters designed for a specific speed, the bicycle can be controlled to follow the roll-

angle reference with only a small tracking error at different constant speeds as well as at widely 

varying speeds. The robustness of the control was also evaluated in the presence of external dis-

turbances. With external lateral forces applied to the bicycle body during the control time, the 

tracking error increased slightly and vanishes very quickly once the external forces are released. 

On the basis of the roll-angle-tracking controller, another control loop is added to address the 

path-tracking problem by using FLC with an integral controller. Simulations with a developed 

bicycle model show advantages of the proposed controller. 
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