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ABSTRACT 

We investigate the steady-state handling of a bicycle as the means to explore the major factors 

governing the maneuverability and handling characteristics of a rider/bicycle system. Steady-

state handling arises when the rider/bicycle negotiates a constant radius turn at constant speed 

and lean. Employing a bicycle instrumented to measure steering torque, steering angle, bicycle 

speed, bicycle acceleration, and bicycle angular velocity, we report data for 108 trials. The trials 
include two subjects executing steady turns of six different radii, at three speeds, and with three 

rider lean conditions. We introduce a model for the steady-state handling of the bicycle/rider 

system that accounts for rider lean and compare the experimental data to the model predictions. 
We find that the model, with idealized tire parameters, explains 97.0% of the variability in the 

measured bicycle roll angle, 99.6% of the variability in the measured steering angle, and 88.8% 

of the variability in the measured steering torque. Using more realistic tire parameters yields 
little difference in the model predictions. Both the model and the data demonstrate that rider 

lean (lateral shifting of the bicycle/rider center of mass) strongly influences the steering 

torque/lateral acceleration ratio, suggesting that rider lean plays an important role in the control 

of a bicycle. By contrast, the steering angle/lateral acceleration ratio is largely insensitive to 

rider lean, suggesting that using the steering angle as a cue for bicycle control is advantageous 

over using steering torque. 

Keywords: instrumented bicycle, steady turning, rider lean, steering torque. 

1 INTRODUCTION 

The design of the modern bicycle is the result of almost two centuries of trial and error. Recent 
research has helped us to understand the stability of a bicycle [1] and has shown that the current 

bicycle configuration could be made more stable with relatively small adjustments to standard 

bicycle geometry [2]. However, stability is not the only characteristic that a human rider desires; 
a bicycle also needs to be maneuverable and have desirable handling characteristics. 

A first step towards understanding the maneuverability of a bicycle is to examine its handling 
characteristics during steady-state turning. The theoretical steady-state turning behavior of 

bicycles has been investigated most recently by Basu-Mandal et al. [3] and Peterson and 

Hubbard [4]. Basu-Mandal et al. employed the nonlinear equations of motion for an idealized 
benchmark bicycle to identify hands-free, (zero applied steer torque) steady-state turning 

motions. In so doing, they provide evidence that a human rider is not required to impart large 

steering torques during steady-state turning. Peterson and Hubbard used the benchmark bicycle 
model to identify all kinematically feasible steady-turns and relate the steering torque and 

velocity needed to develop each turn. Their model reveals that the sign of the steering torque 
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can change depending on the configuration of the bicycle, which has important implications for 
bicycle control.  

Related to the steady-state behavior of bicycles are numerous theoretical and experimental 

studies of the steady-state turning of motorcycles. Fu [5] developed a model for steady-state 

turning, and tested this model using a motorcycle equipped with steering angle and lean angle 

sensors. Experimental measurements of the motorcycle lean angle matched those predicted by 

the model and confirmed the importance of gyroscopic effects. The measured steering angles 

were somewhat less than theoretical predictions, suggesting that the lateral tire force develops 

mainly from tire camber as opposed to tire side slip. Cossalter et al. [6] developed a 

mathematical model of the steering torque as a function of speed, turn radius, tire properties, 

and motorcycle geometry/mass distribution. Doing so revealed the acceleration index , the ratio 

of the steering torque and lateral acceleration, as a fundamental measure of motorcycle 
maneuverability [6-8]. Bortoluzzi et al. [7] constructed an instrumented motorcycle capable of 

measuring steering torque, steering angle, roll angle, velocity, roll rate, and yaw rate for the 

purpose of testing a steady-state model similar to that of Cossalter et al. The measured 

acceleration index remained in good agreement with theoretical predictions and was relatively 

insensitive to changes in tire properties and rider mass distribution. By contrast, the lateral 

displacement (i.e., the lean) of the rider had a pronounced effect on the acceleration index, 
especially at smaller lateral accelerations. 

While bicycles and motorcycles share common features as two-wheeled single-track vehicles, 

there are also key distinctions. For a bicycle, a rider may comprise 85-95% of the total mass, 

whereas for a motorcycle, a rider may only account for 15-30% of the total mass [9]. When the 
ratio of vehicle to rider mass is large (i.e., for motorcycles), the rider steering torque is the 

dominant control input [6]. By contrast, when the vehicle/rider mass ratio is small (i.e., for 

bicycles), other control mechanisms arise, such as upper body lean and knee movement [10]. 

Instrumented bicycles have been used to investigate the human control and dynamic behavior of 

bicycles. Roland [11] instrumented a bicycle to measure steering angle, bicycle roll angle, 
forward velocity of the bicycle, and rider lean angle in order to verify simulation results of a 

riderless bicycle and to analyze the steer and lean control used by a human rider. Jackson and 

Dragovan [12] instrumented a bicycle to measure bicycle speed, angular velocity of the bicycle, 
and steering angle. They used measurements collected during no-hands riding in conjunction 

with simplified equations of motion to investigate the contributions of the torque applied to the 

front wheel by the ground reaction force and the gyroscopic moment. They report reasonable 
agreement with theory. Cheng et al. [13] instrumented a bicycle to measure steering torque 

during turning maneuvers. They found that larger steering torques are required to initiate turns 

developed by larger steering angles as expected. Kooijman et al. [14] instrumented a riderless 

bicycle with angular rate sensors, a steering angle sensor, and a forward speed sensor to validate 

a model of an uncontrolled bicycle, and found the model to be reasonably accurate for the low-

speed behavior. Most recently, Kooijman and Schwab [15] instrumented a bicycle to record 

lean, yaw and steering rates, steering angle, rear wheel speed, and pedaling cadence frequency. 

Their bicycle was also equipped with a video camera to record rider motion. They found that 

during normal cycling on a treadmill and on a short outdoor circuit, most control was done 
through steering as opposed to upper body lean. 

The objective of this paper is to develop a theoretical model to explore the major factors 

governing the maneuverability and handling characteristics of the rider/bicycle system and to 

evaluate model fidelity via an instrumented bicycle. To this end, we focus on steady-state 

handling as defined by a negotiating a constant radius turn at constant speed and lean. We open 

our Methods Section by introducing a novel instrumented bicycle that incorporates sensors to 

detect steering torque, steering angle, bicycle speed, and the acceleration and angular velocity of 

the bicycle. We then introduce a model for the steady-state handling of the bicycle/rider system 
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that also accounts for rider lean. The Results and Discussion Sections summarize substantial 
comparisons of experimental and theoretical results for the bicycle roll angle, steering angle, 

and steering torque. We observe that rider lean (lateral shifting of the bicycle/rider center of 

mass) strongly influences the steering torque/lateral acceleration ratio, suggesting that rider lean 

plays an important role in the control of a bicycle. By contrast, the steering angle/lateral 

acceleration ratio is largely insensitive to rider lean, suggesting that using the steering angle as a 

cue for bicycle control is advantageous over using steering torque. These findings have 

important implications for understanding human control of a bicycle. 

2 METHODS 

2.1 Instrumented bicycle 

An instrumented bicycle was constructed to measure the major variables that define the steady 

state handling of a bicycle. In the following, we describe the bicycle, the sensors, the power 
supplies and the data acquisition system.  

2.1.1 Bicycle  

The bicycle shown in Figure 1 is a standard geometry (head angle = 72 degrees, trail = 58 mm, 

wheelbase = 1.047 m), rigid (unsuspended) mountain bike equipped with 660.4 mm x 49.5 mm 

(26 in x 1.95 in) slick tires. The wheel bearings were properly adjusted and the wheels were 
trued by a professional bicycle mechanic prior to testing. 

 

2.1.2 Instrumentation 

The instrumentation selected for this study enabled the simultaneous measurement of the 

steering torque, the steering angle, the bicycle speed, and the acceleration and angular velocity 

of the bicycle frame. 

Figure 1. The instrumented bicycle. The instrumented bicycle is a standard geometry 

mountain bike equipped to measure: steering torque, steering angle, bicycle speed, 

bicycle angular velocity about three axes, and acceleration along three axes. A laptop 

computer, A/D boards, battery, and circuitry are supported in a box at the rear. 
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Steering torque. We constructed the custom instrumented fork shown in Figure 2 to measure the 
steering torque. The placement of a torque sensor (Transducer Techniques SWS-20) within the 

steerer tube permitted the measurement of the torque transmitted between the handlebars and 

the front wheel. We isolated the torque sensor from unwanted bending moments and axial 

loading by using an angular contact bearing (Enduro 7901). Following installation, we 

calibrated the torque sensor in situ by orienting the bicycle such that the steering axis was 

parallel to the ground, securing a long length of threaded rod in the fork dropouts, and then 

placing known masses at measured distances from the steering axis to create known torques. 

Following calibration, we measured the stiffness of the torque sensor to be 4.97 Nm/deg. The 

signal from the torque sensor was amplified using a load cell signal conditioner (Transducer 
Techniques TMO-1) and was sampled at 1000Hz in the experiments described below. 

 

Steering angle. We employed an optical encoder to measure the steering angle. We secured a 

custom encoder disk (US Digital HUBDISK-2-1800-1125-I) to the bicycle fork similar to a 
headset spacer as illustrated in Figure 3. We attached the encoder module (US Digital EM1-2-

1800) to a custom aluminum plate, which was secured to the bicycle frame by using the top 

headset race as shown in Figure 3. An encoder chip (US Digital LFLS7183) was used to convert 
the raw signal from the encoder module to up and down counts and was sampled at 200 Hz. The 

optical encoder measured the steering angle with a resolution of 0.1 degrees. 

Figure 2. The instrumented fork. We constructed a custom instrumented fork to 

measure steering torque. (A) An exploded view of the steerer tube of the instrumented 

fork. (B) A section view of the assembled instrumented fork. (C) A photograph of the 

disassembled instrumented fork. 

A B C 
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Bicycle speed. We calculated bicycle speed by measuring revolutions of the front wheel and 

then multiplying the number of revolutions per unit time by the circumference of the front 

wheel. Wheel revolutions were measured using a magnetic reed switch (Cateye 169-9772) and a 

single wheel mounted magnet (Cateye 169-9691). We sampled the signal from the magnetic 

reed switch at 1000 Hz. 

Acceleration and angular velocity. A custom inertial measurement unit (IMU) shown in Figure 

4 was constructed using a three-axis accelerometer (Analog Devices ADXL335) and three 

single-axis angular rate gyros (Murata ENC-03M). We secured the IMU to a custom aluminum 
plate which is fastened to the seat tube of the bicycle frame utilizing the water bottle cage 

mounting holes (Figure 4). The angular velocity measurements were used to calculate the turn 

radius and the acceleration measurements were used to calculate the bicycle roll angle as further 

described in Section 2.3. The signals from the accelerometer and three angular rate gyros were 

sampled at 1000 Hz. The IMU was calibrated using the technique described by King [16]. 

 

Data acquisition. We used a small laptop computer (Dell Inspiron mini) running a custom 

LabVIEW (National Instruments) program and two data acquisition boards (National 
Instruments USB-6008) to convert analog signals to digital and to log data collected during each 

Figure 4. A custom inertial measurement unit (IMU). The IMU was secured to a 

custom aluminum plate which was fastened to the bicycle by utilizing the water bottle 

cage mounting holes. 

Figure 3. The encoder and encoder disk used to measure the steering angle. The 

encoder module was fastened to a custom aluminum plate secured to the bicycle frame 

using the upper headset cup. The encoder disk was secured to the steering tube of the 

fork, similar to a headset spacer. 
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trial. The laptop and data acquisition boards were carried in a foam-padded wooden box 
mounted to the rear of the bicycle (Figure 1). 

Power Supplies. Four 3.7 volt, 900 mAh polymer lithium ion batteries (Sparkfun PRT-00341) 

were used to supply power to the instrumentation. We created the required voltage for each 

sensor by wiring the required number of batteries in series. Voltage for each sensor was 

regulated by a step-up / step-down switching DC-DC converter (All-Battery.com, AnyVolt 

Micro). 

2. 2 Experimental protocol 

Two subjects rode the instrumented bicycle around a course containing six curves of constant 

radius (radii 9.14, 12.19, 18.29, 22.86, 27.43, and 30.48 meters). All of the curves, located 
outdoors on smooth and level pavement, were clearly marked with chalk. Each subject selected 

his or her seat height and remained seated during each trial. We instructed the subjects to ride 

the course three times and at constant speeds that the subjects considered to be slow, medium, 
and fast. A bicycle computer with a visual display (Cateye Velo 8) allowed subjects to monitor 

their speed if desired. It is important to note that subjects were required to pedal the bicycle to 

maintain speed; no motors were used to remove the task of pedaling. Allowing the subjects to 

select approximate slow, medium, and fast speeds eliminated the additional mental task 

associated with requiring them to maintain a prescribed speed. As a result, each subject chose 

speeds corresponding to his or her preferred pedaling frequency (cadence). Furthermore, for a 

given curve and speed, the subjects were instructed to complete three trials distinguished by the 

degree of rider lean: natural rider lean, exaggerated rider lean into the turn, and exaggerated 

rider lean out of the turn. In summary, 54 trials were recorded for each subject: 6 curves x 3 
speeds x 3 rider lean conditions. Prior to these trials, the tire pressure was set to 276 kPa (40 

psi). In addition, we experimentally measured the normal force on each wheel by placing a scale 

under the wheel of interest while the subject sat on the bicycle in his/her preferred riding 

posture. 

2.3 Data analysis 

We first reviewed the data for each trial to identify time periods of steady-state turning as seen 

in the example of Figure 5. During steady-state turning, the bicycle speed, roll rate, steering 

angle, and turn radius remain nearly constant. Through visual inspection of bicycle speed, roll 

rate, steering angle, and turn radius, we selected areas of potential steady-state turning from 

each trial. We then analyzed each period of steady-turning by parsing this data into five-second 

blocks that were also shifted by 0.5 seconds. As a result, the first block of data began at the 
beginning of the period of steady turning, the second block of data began 0.5 seconds after the 

beginning of the period, and so on. The data for each five-second block was then averaged (to 

filter any modest transients) and this averaged data was used for all subsequent calculations 

described in the following. We used the following criteria to determine whether or not a block 

of data was considered steady-state:  

• The magnitude of the forward acceleration of the bicycle during a five-second block, as 

calculated from the bicycle speed, must be less than or equal to 0.1 m/s
2
. 

• The standard deviation of the steering angle for a five-second block must not exceed 

three degrees. 
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The inertial measurement unit defines a sensor frame of reference which differs from the 

bicycle-fixed frame illustrated in Figure 6A. The acceleration and angular velocity components 

measured in the sensor-fixed frame (������������� and ��������������) must be transformed into components 
measured in the bicycle-fixed frame (��	
��������� and ��	
����������) for subsequent data reduction. This is 
achieved using, for example, 

 ��	
��������� � ���� 0 �����0 1 0���� 0 ��� � ������������� (1) 

where � denotes the seat tube angle relative to vertical. The average radius of the turn for each 
five-second block was then determined from 

 � � ������� � ��	���
  

(2) 

Figure 5. Identification of a region of steady-state turning. Bicycle speed, roll rate, 

steering angle, and instantaneous turn radius were used to identify a region of steady-

state turning for processing. The region of steady turning for the example trial shown (a 

medium speed, clockwise turn with a turn radius of 9.14 meters) lies within the two 

vertical (black) lines. Another large region of steady-state turning begins around 90 

seconds and ends at approximately 125 seconds. The turn radius data has been truncated 

to highlight the steady-state turning region of interest. 
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where   denotes the corresponding bicycle speed and �� and �	 denote the angular velocities 
about the x and y axes illustrated in Figure 6B. The angular velocities �� and �	 were 
determined using the outputs from the three sampled single-axis angular rate gyros. Note that 

upon assuming the pitch rate of the bicycle is negligible, the numerator of Equation (2) 

represents the yaw rate.  

 

The bicycle roll angle (!) follows from the bicycle-fixed frame acceleration, ��	
���������, which 
includes the centripetal acceleration for steady turning (directed in the horizontal plane) and the 
acceleration due to gravity (directed along the vertical). For a clockwise turn, one of two 

equations is used to calculate roll angle, depending the direction of the measured acceleration 

along the bicycle fixed-frame y-axis (�	). 
For a clockwise turn with �	 " 0 
 ! � #tan'� #(�	(|��|* � tan'� # �

�+** (3) 

For a clockwise turn with �	 , 0 
 ! � #tan'� # �

�+* � tan'� #(�	(|��|** (4) 

where �� and �	 are the values of the measured acceleration along the x and y axes defined in 
Figure 6. 

Due to the placement of the steering angle optical encoder relative to the steering torque sensor, 

the angular displacement of the handlebar and stem about the steering axis (-./0123/4) was 
recorded instead of the angular displacement of the front wheel about the steering axis (-532/). 
However, these values differ by a small but measurable twist of the assembly. The true steering 

angle, or angular displacement of the front wheel about the steering axis, is given by 

 -532/ � -./0123/4 � 674.97  (5) 

where 67 is the measured steer torque and 4.97 Nm/deg is the aforementioned stiffness of the 
torque sensor assembly. 

 

Figure 6. (A) The rotation of the bicycle-fixed frame (=̂� , =̂	, =̂
) relative to the sensor-
fixed frame (=̂�, =̂�, =̂�). (B) The rotation of the bicycle-fixed frame relative to the 

inertial frame (=̂@ , =̂A, =̂5) 

A B 
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2.4 Theoretical model for steady-state handling 

Our stated objective is to develop a fundamental understanding of the steady-state handling of a 
bicycle. To this end, and to complement the experimental procedure above, we developed a 

steady-state model for a bicycle making a turn of constant radius with constant speed and lean, 

similar to that for a vehicle [17, 18]. The model employs the following assumptions.  

• Relative to the dominant forces (lateral tire forces and weight), air drag, longitudinal tire 

forces, and vertical tire moments are negligible. 

• The turn radius (�) is much larger than the bicycle wheelbase (B). 
• The steer angles remain small (- C 10°). 
• The tires obey a linear elastic tire model. 

• The pitch of the bicycle during turning remains negligible. 

• The pneumatic trails of the tires remain negligible. 

• The mechanical trail of the front wheel remains constant and independent of steer and 

lean.  

 

The steady-state handling equations are derived from applying Newton’s law in the lateral 

direction and moment equilibrium about the vertical axis. Figure 7 defines the bicycle model 
and the key variables. Solving Newton’s law for the lateral tire forces yields 

 
E	FE
F �  �

�+ � �A+ , � � G, H (6) 

where � is an index used to denote the front (� � G) or rear (� � H) tire, E	 is the lateral tire force, E
 is the normal tire force, �A is the lateral acceleration, and   and � are the forward speed and 
turn radius introduced above.  

Figure 7. The bicycle in a steady-state turn. Important parameters are noted and are 

positive in the direction of the arrows. 

�! � !	� 
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Recall that our experiments also allowed the rider to lean relative to the bicycle as seen in 

Figure 8. A leaning rider produces a lateral offset of the center of mass of the bicycle-rider 

system from the plane of the bicycle. The additional roll angle of the plane of the bicycle (!	) 
caused by this lateral offset is required for moment equilibrium about the longitudinal axis (aka 

the heading or x-axis). From this moment equilibrium equation, we deduce the following 

relationship between the roll angles and lateral acceleration: 

 �A � + tan�! � !	� (7) 

where ! is the roll angle of the bicycle and !	 is the additional roll angle caused by a rider 
leaning out of the plane of the bicycle. The camber of the (unsteered) rear tire is simply the roll 

angle of the bicycle 

 I3 � ! (8) 

whereas the camber angle of the front tire 

 IJ � sin'��sin ! � - cos ! sin O� (9) 

also depends on the tilt of the steer axis O and the steer angle - where the small steer angle 
approximation is used again. 

The linear elastic tire model accounting for tire side slip and camber [18] is given by 

 E	F � PQRFSF � PQTFIF, � � G, H (10) 

where PQR is the slip or cornering stiffness, S is the tire side slip angle, PQT is the camber 
stiffness, and I is the camber angle. In our study, we employ three sets of tire stiffness values: 
those from Roland [11] and Sharp [19] for elastic tires, and those for an idealized tire model [6] 

with infinite slip stiffness and zero camber stiffness (PQR � ∞, PQT � 0). The tire models of 
Roland and Sharp have been modified slightly for this study; namely, the nonlinear stiffness 

term (slip angle cubed) in the Roland model was neglected and the aligning stiffness term in the 
Sharp model was neglected. Table 1 provides a summary of the tire stiffness parameters used. 

Figure 8. The additional roll angle of the bicycle caused by a leaning rider. For a 

clockwise turn, a rider can create a positive value of additional roll angle (!	) by 
leaning out of the turn. The arrows denote positive values for bicycle roll angle (!) and 
the additional roll of the bicycle caused by rider lean (!	) 
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Table 1. Summary of the tire stiffness parameters used in this study. 

Tire parameters UVW (N/rad) UVX (N/rad) 

Idealized tire [6] ∞ 0 

Roland [11] E
FZ1 � ��4.88 \ 10']^'��E
F_ \ 12.9 E
FZ1 � ��4.88 \ 10']^'��E
F_ \ 0.186 
Sharp [19] 14.325 \ E
F 1 \ E
F 

 

 Solving Equations (6) – (10) for the slip angles for the front (SJ) and rear (S3) tires yields 

 SJ � 1PQRJ �E
J tan�! � !	� � PQTJIJ� (11) 

 S3 � 1PQR3 �E
3 tan�! � !	� � PQT3I3� (12) 

Under the assumptions of our model, the kinematics of a steady-turn [18] require that 

 � � B-d � SJ � S3 (13) 

where -e is the ground steer angle given by 
 -d � - cos Ocos ! � - sin ! sin O (14) 

 

Using the measured geometry from the instrumented bicycle, we calculate the trail (f) and the 
mechanical trail (fg) illustrated in Figure 9 as 

 f � HJ cos�h � O� � Bisin�h � O�  (15) 

 fg � f cos�O� (16) 

where HJ is the radius of the front wheel, O again is the steer axis tilt (or h minus the head 
angle), and Bi is the fork rake. The steer torque (67) required by the rider can then be found by 

Figure 9. Front wheel assembly of a bicycle illustrating the dimensions and the 

geometric relationships between rake (Bi), front wheel radius (HJ), steer axis tilt (O), trail 
(f), and mechanical trail (fg). The mechanical trail is the perpendicular distance 
between the steering axis and the point of contact between the front wheel and the 

ground whereas the trail is the horizontal component of the mechanical trail. 
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summing the moments about the steering axis caused by the normal force (E
J) and the lateral 
force (E	J) acting on the front tire. 
 67 � fgE	J cos IJ � fgE
J sin IJ (17) 

Solutions to the steady-state handling model above are found as follows. We begin by 

specifying the bicycle roll angle (!), additional roll angle caused by rider lean (!	), and the 
steering angle (-). These values are first used in Equations (7) – (9) to solve for the lateral 
acceleration and the camber angles of the front and rear tires. Next, the camber angles and roll 
angles are used in Equations (11) and (12) to solve for the slip angles of the front and rear tires. 

We then calculate the lateral tire force using Equation (10) and turn radius using Equation (13). 

Finally, we calculate the steering torque from Equation (17). 

2.5 Comparison of the model to experimental data 

In order to compare the model predictions to the experimental data, we used the measured 

bicycle speed ( ), nominal turn radius (�), and bicycle roll angle (!) as follows. 
1. The lateral acceleration was calculated using Equation (6). 

2. Using the measured bicycle roll angle, we calculated the additional roll of the bicycle 

caused by rider lean (!	) using Equation (7). 
3. We solved for the predicted slip and camber angles of the rear tire using Equations (8) 

and (12). 

4. We solved for the model predicted slip and camber angles of the front tire, steer angle, 

and ground steer angle by numerically solving Equations (9), (11), (13), and (14). 

5. We calculated the predicted lateral tire force on the front tire using Equation (10). 

6. Finally, we calculated the predicted steering torque using Equation (17). 

We assumed that the weight distribution of the bicycle/rider system did not change significantly 

from the measured static weight distribution during riding. The weight distribution for each 

rider is summarized in Table 2. 

Table 2. Weight distribution for each subject. 

Parameter Subject 1 Subject 2 

E
J 267 N 311 N 

E
3 508 N 556 N 

 

We evaluated the fit of the experimental data to the model predictions statistically by calculating 

the correlation coefficient between the experimental and theoretical results and to calculate the 

linear least squares fit of the experimental to theoretical results. We used an alpha level of 0.05 

to determine statistical significance. 

3 RESULTS 

Roll angle. The measured bicycle roll angle is plotted versus normalized lateral acceleration in 

Figure 10; the roll angle predicted by the model (Equation (7)) for a non-leaning rider (!	 � 0) 
is also plotted for comparison. The non-leaning rider model predicts 99.9% (S � 0.05) of the 
variation of the measured bicycle roll angle for the normal trials without exaggerated rider lean. 

Moreover, the same model predicts 97.0% (S � 0.05) of the variation of the measured bicycle 
roll angle, regardless of rider posture (normal riding, leaning body into turn, or leaning body out 

of turn). The linear fit of measured versus predicted bicycle roll angle has a slope that is 
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significantly close to 1.0 (Table 4), which further confirms that this model closely predicts the 
measured data. 

The modest deviations from the model for a non-leaning rider derive from the additional roll of 

the bicycle caused by a lateral offset of the center of mass of the bicycle-rider system. For 

example, a rider leaning into a clockwise turn will cause the bicycle roll angle to decrease, 

resulting in a bicycle roll angle slightly less than that predicted by the non-leaning rider model. 

Both subjects clearly exhibit this trend, as shown by the dark gray ‘�’ symbols in Figure 10. 
The opposite trend arises for a rider leaning out of a clockwise turn, as shown by the light gray 

‘\’ symbols in Figure 10. If we assume that the measured bicycle roll angle is correct, we can 
calculate the additional roll of the bicycle caused by a lateral shift in the center of mass (!	) 
using Equation (7). The mean values for the calculated !	 are reported in Table 3. Both riders 
were able to create significant additional roll of the bicycle by leaning; on average, the 
additional roll angle of the bicycle was -2.4 degrees and 2.0 degrees when the riders leaned into 

and out of the turn, respectively. During normal riding, riders tended to lean slightly into the 

turn, generating an additional roll angle of merely -0.3 degrees. 

 

Table 3. Mean calculated values of !	 from experimental data for different lean conditions 
Subject jk, normal riding jk, leaning body into turn jk, leaning body out of turn 

1 -0.5° -1.6° 0.8° 

2 0.0° -2.9° 2.7° 

1 & 2 -0.3° -2.4° 2.0° 

 

Steering angle. The steering angle (-) is predicted well by the model, as shown in Figure 11. 
The model, regardless of the tire stiffness values used, provides a good fit to experimental data, 
as evidenced by the linear fit and R2 values reported in Table 4. Using tire stiffness values for an 

idealized tire, the model can explain 99.6% (S � 0.05) of the variation in the measured steering 
angle. Using more realistic tire stiffness values (from Roland [11] and Sharp [19]) did not result 

in significantly more explained variation, but yields small differences in the linear fits to the 

data reported in Table 4. Different tire stiffness values do result in different calculated slip 

Figure 10. Bicycle roll angle versus normalized lateral acceleration. The experimental 

data are predicted well by a non-leaning rider model (�� � 0.970, S � 0.05). Deviation 
from the model prediction can be interpreted as additional roll of the bicycle caused by 

a lateral shift in the bicycle-rider system center of mass. 
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angles, ranging from zero degrees for the idealized tire stiffness values to approximately 2.6 
degrees for the Roland tire stiffness values. However, as shown in Equation (13), if the slip 

angles of the front and rear tires are similar, they produce little change in the resulting steering 

angle. The maximum difference between the calculated slip angles of the front and rear tires 

was 0.4 degrees, and occurred when using the Roland tire stiffness values. Measured steady 

turning steering angles ranged in magnitude from approximately zero to 7.5 degrees. 

Table 4. Summary of the linear fit (l �  mn �  o) of measured values to model predicted values 
Predictor, from model (p) Predicted variable (k) Slope (q) y-intercept (r) R

2 

bicycle roll angle measured bicycle roll angle 1.00 0.6° 0.970 

steering angle, idealized tire measured steering angle 1.01 -0.2° 0.991 

steering angle, Roland tire measured steering angle 1.04 -0.2° 0.990 

steering angle, Sharp tire measured steering angle 1.03 -0.2° 0.991 

steering torque, idealized tire measured steering torque 1.29 0.12 Nm 0.888 

steering torque, Roland tire measured steering torque 1.31 0.13 Nm 0.896 

steering torque, Sharp tire measured steering torque 1.30 0.12 Nm 0.893 

Note: All reported constants from linear fits (m and o) are significantly different than zero 
and all values of R

2
 are significant (S � 0.05). 

 

Steering torque. The model, using idealized tire parameters, can explain 88.8% (S � 0.05) of 
the variation in the measured steering torque. When the tire stiffness values from Roland are 
used, the fit to the experimental data is only slightly different, but the difference is significant 

(S � 0.05) and the model can explain 89.6% (S � 0.05) of the variation in the measured 
steering torque. However, the Roland tire stiffness values do not produce results significantly 
different from the Sharp tire stiffness values. The model, regardless of tire stiffness values used, 

under-predicts the overall experimental data by approximately 30% (Table 4). However, as 

Figure 11. Measured steering angle versus model predicted (using idealized tire 

stiffness values) steering angle. The experimental data are predicted well by the model 

when the idealized tire stiffness values are used (�� � 0.991, S � 0.05). Using more 
realistic tire stiffness values yields no significant improvement of the model predictions. 

The clusters of data correspond to the different radii of turns tested experimentally. 

Scanning from left to right, the data groups correspond to: counter clockwise turning 

around radii of 12.2, 18.3, 27.4 and 30.5 meters and clockwise turning around turns of 

22.9 and 9.1 meters. 
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shown in Table 5, the accuracy of the predicted value can vary depending on the rider-lean 
condition; this trend can also be seen in Figure 12. For normal riding, the measured steering 

torque is over-predicted by approximately 22%, whereas for the rider leaning into the turn the 

measured steering torque is under-predicted by about 90% (Table 5). Measured steady turning 

steering torque ranged in magnitude from approximately zero to 2.4 Nm; the average standard 

deviation for each five-second window of data was 0.74 Nm. Maximum steering torque was 

measured when the rider leaned out of the turn. 

 

Table 5. Summary of the linear fit (l � mn � o) of measured steering torque (l) to the 
predicted steering torque (n) for different rider-lean conditions. The idealized tire stiffness 
values are used for the model predictions. 

Lean condition Slope (q) y-intercept (r) R
2
 

Normal riding 0.78 0.04 Nm 0.815 

Rider lean into turn 1.90 0.26 Nm 0.836 

Rider lean out of turn 1.23 0.28 Nm 0.973 

Note: All reported constants from linear fits (m and o) are significantly different than zero 
and all values of R

2
 are significant (S � 0.05). 

Ratio of steering torque and lateral acceleration. The ratio of steering torque and lateral 

acceleration is plotted versus bicycle speed in Figure 13 for both subjects. The experimental 

data is plotted for normal riding conditions (black ‘•’), rider leaning body into the turn (dark 

gray ‘+’), and rider leaning body out of the turn (light gray ‘\’). Example results from the 
model (curves) are plotted for comparison. As the model is largely insensitive to the selected 

tire stiffness, we report in Figures 13-14 solutions using the idealized tire. The solution for 

normal riding is represented by the black solid curve, which is independent of turn radius. The 

Figure 12. Measured steering torque versus the model predicted (using idealized tire 

stiffness values) steering torque. The variation of the measured steer torque is predicted 

well by the model when the idealized tire stiffness values are used (�� � 0.888, S �0.05). Using more realistic tire parameters yields no major changes in the predicted 
variance or the linear fit of the measured values to the model. However, the linear fit of 

the measured values to the model does change appreciably if each rider-lean condition 

is examined separately. 
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solution for a leaning rider (!	 s 0) depends on both !	 and the turn radius. Example solutions 
are illustrated in Figure 13 for the cases !	 �  t3 degrees and for a turn radius of 12 meters. In 
general, these curves shift upward for more negative values of !	 and larger turn radii; the 
curves shift downward for more positive values of !	 and larger turn radii. 
The experimental data follows the trends predicted by the model. For a non-leaning rider, the 

model predicts a negative ratio of steering torque to lateral acceleration, which increases in 

magnitude at lower speeds. When this ratio is negative, a rider must apply a counter-clockwise 

steering torque when negotiating a clockwise turn. The experimental data generally follows the 

same trend; however at low speeds, the variation in the data increases. At lower speeds the 

lateral acceleration is very small and thus this ratio is very sensitive to small fluctuations in the 

measured acceleration. Therefore, the model is best compared to the experimental results when 
the lateral acceleration is significant compared to the acceleration of gravity. For the case of a 

rider leaning into the turn, both the model and experimental data show that this ratio is positive, 

meaning that a rider must apply a clockwise steering torque to negotiate a clockwise turn. For 
the opposite case of a rider leaning out of the turn, both the model and experimental data 

confirm that this ratio is more negative than in the normal riding condition. 

 

Ratio between steering angle and lateral acceleration. The ratio between the steering angle and 

lateral acceleration is plotted versus bicycle speed in Figure 14 for both subjects. For 

comparison, we include a single curve for the model for a non-leaning rider (!	 � 0) with 
idealized tire stiffness values. The model predictions for a leaning rider (!	 s 0) are virtually 
indistinguishable from that of the non-leaning rider and are therefore omitted. 

The experimental data closely match the model prediction. Both the model and experimental 

data show that this ratio is positive, regardless of condition, and becomes more positive at lower 

speeds. A positive ratio means that a rider must maintain a clockwise steering angle when 

negotiating a clockwise steady-turn; and, for a given lateral acceleration, greater steering angles 

Figure 13. The ratio of steering torque to lateral acceleration versus bicycle speed. Both 

the model and experimental data show that the ratio of steering torque to lateral 

acceleration is negative for normal riding (black), more negative for a rider leaning out 

of the turn (light gray), and positive for a rider leaning into a turn (dark gray). A 

negative ratio means that a rider must apply a counter-clockwise steering torque to 

negotiate a clockwise steady turn, whereas a positive ratio means that a rider must apply 

a clockwise steering torque to negotiate the same turn. 
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are required at lower speeds. The experimental data confirm that this ratio is insensitive to rider 
lean.  

 

4 DISCUSSION 

As illustrated in Figure 10, the roll angle of the bicycle is predicted well by the simple steady-

state turning model developed in Section 2.4. For a motorcycle in steady turning, Fu [5] showed 

that the roll angle is predicted best when the model includes the gyroscopic effects of the 

motorcycle wheels and engine, as well as tires with a circular cross-section. In contrast, we 

found that for a bicycle the roll angle is predicted rather well upon neglecting gyroscopic effects 
and considering the wheel as a thin disk with a zero-radius edge. 

We also demonstrate that a seated rider can generate significant additional roll of a bicycle 

(Table 3) simply by leaning his/her upper body into or out of a turn. In fact, lean dynamics arise 

even while riding in a straight line as observed by riders maintaining position on a treadmill 

[10]. In practice, cyclists often lean their bodies into a turn to increase pedal clearance, such as a 

road cyclist racing in a criterium. As illustrated in Figure 10, by leaning into the turn, the cyclist 

decreases the roll angle of the bicycle, and therefore gains pedal clearance. Alternatively, 

cyclists may lean their bodies out of a turn, as in the case a mountain biker leaning to avoid trees 
or branches lining the trail. As illustrated in Figure 10, by leaning out of the turn, the cyclist 

increases the roll of the bicycle but decreases the lateral distance of her/his body from the base 

of support of the bicycle. The steady-state model is also useful for predicting the changes in 
steering torque (and the ratio of steering torque to lateral acceleration) when a rider leans into or 

out of a turn. 

The steer angle of the bicycle is predicted well by the model, regardless of the tire stiffness 

values used; refer to Table 4 and Figure 11. The linear fit of the data to the model results yields 

values of the slope only slightly greater than one (Table 4), indicating that the model slightly 

under-predicts the steer angle, regardless of the tire stiffness values. In contrast to these results, 

Fu [5] observed that for a motorcycle in a steady-turn, the steering angle is over-estimated by a 

steady state turning model. The y-intercept of the linear fit is approximately -0.2 degrees, 

regardless of rider lean or tire stiffness values, indicating that perhaps the method of zeroing the 

Figure 14. The ratio of steering angle and lateral acceleration versus bicycle speed. The 

ratio is always positive for both the experimental data and model, indicating that a rider 

must always steer into a steady-turn. The ratio is insensitive to rider lean. 
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steering angle introduced a slight systematic error. The predicted slip angles of the tires ranged 
from zero (for the idealized tire) to approximately 2.4 degrees (when using tire stiffness values 

from Roland [11]). However, because the front and rear tires generate near-equal slip, there is 

little net effect on the steering angle of the bicycle. Therefore, the presence of side-slip while 

riding a bicycle is not likely to be detected by a rider through the steering angle. 

The steady-state turning model reasonably predicts the steering torque of a bicycle. The model 

explains 88.8% of the variation in the measured data and correctly predicts the reversal of the 

steering torque. However, the model tends to under-predict the measured steer torques by 

approximately 30%. This discrepancy might be reduced by adopting more detailed, multi-body 

models of Cossalter et al. [20] and Sharp [19], among others [6, 7, 17, 21, 22]. However, the 

discrepancy might also arise from the measurement limitations of the current torque sensor. In 

particular, all measured steering torques were less than 10% of the full scale range of the sensor, 
rendering the torque measurements sensitive to both small systematic and random error sources. 

The steering torque required to steer a bicycle around a steady curve is substantially smaller 

than that for a motorcycle; we measured a maximum steering torque of 2.4 Nm for the tested 

conditions, whereas Bortoluzzi et al. [23] measured steering torques up to 9 Nm for a 

motorcycle with a non-leaning rider. In addition, the steering torque during each five second 

window varied significantly, with an average standard deviation of 0.74 Nm. Another source of 
error could derive from the fact that the steering torque is very sensitive to the camber angle of 

the front tire. In particular, errors in the measured bicycle roll angle translate to errors in the 

computed camber angle and thus errors in the calculated steering torque. 

The ratio of the steering torque to the lateral acceleration, or acceleration index, has been 
identified in the motorcycle handling literature as an important measure of maneuverability [6-

8]. For a motorcycle, the ratio defines the gain between the dominant control input (steer torque) 

and the vehicle response (lateral acceleration). Similar to the motorcycle steady turning results 
of Bortoluzzi et al. [7], we found that the steering torque/lateral acceleration ratio follows the 

trends predicted by a steady turning model. Both our experimental and theoretical results also 

confirm the theoretical findings of Bortoluzzi et al., which demonstrate that the lateral 

displacement of a rider’s center of mass has a significant effect on the steering torque/lateral 

acceleration ratio. 

Our experimental and theoretical results demonstrate that a rider can significantly change the 

steering torque required to negotiate a steady-turn by simply leaning into or out of the turn. 

Leaning into the turn can produce a dramatic effect, namely the complete reversal of the 
required steering torque. The steering torque governed by Equation (17) is primarily a function 

of: 1) the vertical force on the front tire, 2) the lateral force on the front tire, and 3) the camber 

angle of the front tire. For a non-leaning rider, the vertical force remains the dominant 

contributor to the steering torque and this contribution yields a negative steering torque. 

However, if the roll of the bicycle (and therefore the camber angle of the front tire) is changed 

by a leaning rider, the lateral force can become the dominant contributor and reverse the sign of 

the steering torque. Several models have been derived to explore how a rider is able to ride a 

bicycle with no-hands, i.e., ride with zero steering torque [9, 19, 24]. These models incorporate 

the lean (reaction) torque that is applied between the rider’s upper body and the bicycle. While 
we have not measured this lean torque, we clearly demonstrate that upper body lean can be used 

to control the sign as well as the magnitude of the steering torque required to negotiate a steady-

turn. Therefore, it is also possible for a rider to adjust his/her body lean to achieve zero steering 
torque, thereby enabling no-handed riding. Similarly, for “hands-on” riding, a rider may adjust 

his/her lean to control the steering torque.  

The above discussion suggests that the steering torque is not an easy quantity for a rider to 

predict. For instance, a rider can simply change the required control strategy from applying a 

steer torque out of the turn to applying a steer torque into a turn by leaning out of a turn. In 
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addition, a dynamically leaning rider constantly changes the steering torque/lateral acceleration 
ratio by simple pedaling and shifting weight from side-to-side. A more predicable relation 

between a control action and bicycle response is suggested by the steering angle/lateral 

acceleration ratio. This ratio is always positive and follows the same curve, regardless of rider 

lean. This suggests that steering angle is a better control action than steering torque. 

The steady-state turning model represents a useful tool for evaluating the maneuverability and 

handling characteristics of bicycles. The model can be further used to explore how changes in 

bicycle parameters (wheelbase, steer axis tilt, wheel size, fork rake, trail, and weight 

distribution) affect the steering angle and the steering torque required of the rider during steady 

turning as well as how rider lean can be used to control the bicycle. A major benefit of this 

simple model is that it does not require knowledge of the inertial properties of the wheels, rider, 

or bicycle frame—only the weight distribution needs to be known. Simple models of bicycle 
control have been used to design bicycles that are intentionally unrideable [25] as well as 

bicycles that make it easier for new riders to learn how to ride a bike [25, 26]. Similarly, the 

model developed here could be useful for optimizing the maneuverability and handling 

characteristics of bicycles, perhaps for specific populations. Along with simple models that 

predict bicycle stability [1] and controllability [25], the model here forms part of larger toolbox 

that may enable scientists and bicycle designers to quantify bicycle performance characteristics 
and the control preferences of the human rider. 

5 SUMMARY AND CONCLUSION 

We investigated the steady-state handling of a bicycle as the means to explore the major factors 

governing the maneuverability and handling characteristics of a rider/bicycle system. Steady-
state handling arises when the rider/bicycle negotiates a constant radius turn at constant speed 

and lean. We employed a bicycle instrumented to measure steering torque, steering angle, 

bicycle speed, bicycle acceleration, and bicycle angular velocity. We collected data for two 

subjects during steady-turning around six different radii turns (9.14, 12.19, 18.29, 22.86, 27.43, 

and 30.48 meters), three speed conditions (slow, medium, and fast), and three rider lean 

conditions (normal rider lean, exaggerated lean into the turn, and exaggerated lean out of the 

turn). We then introduced a model for the steady-state handling of the bicycle/rider system, 

which allows for rider lean, and compared the experimental data to the model predictions. 

Specifically, we compared: bicycle roll angle, steering angle, steering torque, steering 

torque/lateral acceleration ratio, and steering angle/lateral acceleration ratio. 

The model is a useful tool for understanding the maneuverability and handling characteristics of 
a pedaled bicycle in a real-world environment. The model, with idealized tire parameters, 

explains 97.0% of the variability in the measured bicycle roll angle, 99.6% of the variability in 

the measured steering angle, and 88.8% of the variability in the measured steering torque. Using 
more realistic tire parameters yields little difference in the model predictions. Both the model 

and data demonstrate that rider lean (lateral shifting of the bicycle/rider center of mass) strongly 

influences the steering torque/lateral acceleration ratio, suggesting that rider lean plays an 

important role in the control of a bicycle. By contrast, the steering angle/lateral acceleration 

ratio is largely insensitive to rider lean, suggesting that using the steering angle as a cue for 

bicycle control is advantageous over using steering torque. 
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