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Abstract

In the real world, a fast-rolling coin or child's hoop exhibits asymptotic stability in lean and in
heading rate. That is, after being perturbed, it returns to straight upright rolling, with exponentially
decaying deviations (as long as the forward rolling rate remains high).

However, for an idealized model of a dissipation-free rolling wheel, such stability is not predicted
by the linearized dynamic equations. As shown in many textbooks (e.g.,Greenwood [5]), above
a critical speed, the perturbation eigenvalues all have zero real parts, indicating a constant (i.e.,
undamped) oscillation superimposed on a steady (i.e.,unstraightening) circular trajectory. In fact,
such neutral stability is the most that can be achieved by non-dissipative systems with fore/aft
symmetry: true stability is prohibited, since the time reversibility of any trajectory means that de-
caying motions imply the simultaneous existence of growingmotions (as pointed out by Meijaard,
et al. [7] and proved in Bloch,et al. [1]). The observed stability of real-world disks or hoops is
evidently a result of dissipation, such as tire spin friction, that is not included in most rigid-body
dynamics analyses.
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Figure 1. (a) An early classical monocycle from patent No. 611,534 byV. D. Venable,
1898. (b) An un-driven generalized monocycle model showingparameters and con�guration
variables; it reduces to a classical monocycle forx = 0 and z < R . Note that, in this
view, x < 0 . The subscripts `f ' and b̀ ' refer to the �xed and bank frames, respectively. The
massless rigid supporting structure of Body 2 is in white.

We focus our attention on themonocycle(see Fig. 1(a)), a laterally symmetric wheel augmented
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by a mass distribution representing a person within it, which is steered by lateral body shifting.
We wish to investigate whether an intentional departure from fore-aft symmetry of a laterally sym-
metric rider could provide the kind of strong dynamic stability not dependent on dissipationthat
is observed for a typical uncontrolled bicycle [7]). Here, in order to further investigate the effects
of asymmetric mass distribution, we extend the analysis to accommodate fore/aft displacements
of the rider center of mass, which requires a second support point (such as a caster wheel) in order
to maintain the rider's position. This we call the `generalized monocycle' model.

We show that a generalized uncontrolled, conservative model of a monocycle consisting of a rigid
body rider plus a wheel that reduces to a classical monocyclecan have asymptotically stable steady,
vertical, straight-line motions. The model predicts enhanced stability with increasing amounts of
fore/aft asymmetry in the mass distribution. We obtain the results using both linearized stability
analyses and numerical solutions of the full nonlinear governing equations. The model's arbitrary
rider center of mass position within the wheel permits greater stability than for the classical design.
The results corroborate and extend those that can be extracted from the century-old analysis by
Carvallo [2].

Three main features combine to produce stability: (1) nonholonomy, (2) a fast enough rolling
wheel with non-negligible mass (nonholonomy and an adjustable rider mass distribution are not
enough to produce stability), and (3) proper mass distribution. For comparison, some examples of
other mechanical systems that are also constrained to motions on a �at plane (or small downhill
slope), are statically unstable in all con�gurations, yet can be dynamically stable at a local poten-
tial energy maximum without control are: tops; a riderless bicycle with massless rigid wheels [7];
a skateboard with a properly positioned rigid rider [6]); a rigid regular polygon rolling down-
hill [3];and, some simple rigid-body models of walking [4]). These systems gain their stability
by having some mixture of fast-spinning parts, dissipation, nonholonomic kinematic constraints,
intermittent contact, special mass distributions, and linkages that connect internal degrees of free-
dom. An important aspect of the smooth systems is that Hamiltonian (conservative, holonomic
systems)cannot be asymptotically stablewhile conservative nonholonomic systemscan[8].
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